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Attractive photons in a quantum nonlinear medium
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The fundamental properties of light derive from its constituent
particles—massless quanta (photons) that do not interact with one
another1. However, it has long been known that the realization of
coherent interactions between individual photons, akin to those
associated with conventional massive particles, could enable a wide
variety of novel scientific and engineering applications2,3. Here we
demonstrate a quantum nonlinear medium inside which individual
photons travel as massive particles with strong mutual attraction,
such that the propagation of photon pairs is dominated by a two-
photon bound state4–7. We achieve this through dispersive coupling
of light to strongly interacting atoms in highly excited Rydberg states.
We measure the dynamical evolution of the two-photon wave-
function using time-resolved quantum state tomography, and dem-
onstrate a conditional phase shift8 exceeding one radian, resulting in
polarization-entangled photon pairs. Particular applications of this
technique include all-optical switching, deterministic photonic
quantum logic and the generation of strongly correlated states of
light9.

Interactions between individual photons are being explored in cavity
quantum electrodynamics, where a single, confined electromagnetic
mode is coupled to an atomic system10–12. Our approach is to couple a
light field propagating in a dispersive medium to highly excited atomic
states with strong mutual interactions13,14 (Rydberg states). Similar to
previous studies of quantum nonlinearities involving Rydberg states that
were based on dissipation15–19 rather than dispersion20, we make use of
electromagnetically induced transparency (EIT) to slow down the propa-
gation of light21 in a cold atomic gas. By operating in a dispersive regime
away from the intermediate atomic resonance (Fig. 1b), where atomic
absorption is low and only weakly nonlinear22, we realize a situation in
which Rydberg-atom-mediated coherent interactions between indi-
vidual photons dominate the propagation dynamics of weak light pulses.
Previous theoretical studies have proposed various scenarios for induc-
ing strong interactions between individual photons2,3,23 and for creating
bound states of a few quanta4,5,7,24, a feature generic to strongly inter-
acting quantum field theories. The main result reported here is the
experimental realization of a photonic system with strong attractive inter-
actions, including evidence for a predicted two-photon bound state.

Our experiment (outlined in Fig. 1a) makes use of an ultracold
rubidium gas loaded into a dipole trap, as described previously19. The
probe light of interest iss1-polarized, coupling the ground state, jgæ, to
the Rydberg state, jræ, via an intermediate state, jeæ, of linewidth
C/2p5 6.1 MHz by means of a control field that is detuned by D below
the resonance frequency of the upper transition, jeæ R jræ (Fig. 1b).
Under these conditions, for a very weak probe field with mean incident
photon rate Ri 5 0.5ms21, EIT is established when the probe detuning
matches that of the control field (see Fig. 1c, which shows the probe
transmission and phase shift). However, the Rydberg medium is extre-
mely nonlinear: a probe photon rate of Ri 5 5ms21 saturates the medium
as a result of the Rydberg blockade25, yielding a probe spectrum close to
the bare two-level response. Given the measured system bandwidth of
about 5ms21, this implies a substantial nonlinear response with aver-
age pulse energies corresponding to less than one photon per inverse

bandwidth. We perform our experiments on the two-photon resonance
jgæ R jræ, where, for jDj. C, the transmission is approximately inde-
pendent of the probe photon rate for our experimental parameters,
yielding a purely dispersive nonlinearity. The linear dispersion at this
resonance corresponds to a reduced probe group velocity of typically
vg 5 400 m s21, and the group velocity dispersion endows the photons
with an effective mass26 of m < 1,000Bv/c2, where v is the optical
frequency, B is Planck’s constant divided by 2p and c is the speed of
light in vacuum.

To explore the quantum dynamics in the propagation of photon
pairs, we measure time-dependent two-photon correlation functions
of the transmitted light (Fig. 1a). To determine both the amplitude and
the phase of the s1-polarized probe field, we prepare input coherent
light in a linearly polarized state, Vj i~ szj iz s{j ið Þ

� ffiffiffi
2
p

, where the
s2-polarized component (which is approximately non-interacting
owing to the 15-fold-smaller transition strength) serves as a phase
reference. To analyse the properties of photon pairs, we measure two-
photon correlation functions, g 2ð Þ

ab , in different polarization bases, a and b
(Supplementary Fig. 3). The component g 2ð Þ

zz directly gives the prob-
ability density of the s1-polarized interacting photon pairs. Figure 1d
shows g 2ð Þ

zz, for a control detuning of D/2p5 14 MHz, as a function of
the time separation, t 5 t1 2 t2, between the photons detected at times
t1 and t2, converted into a relative distance, r, in the medium using the
group velocity, vg. A prominent feature is the cusp at r 5 vgt 5 0, which
is characteristic of a predicted two-photon bound state5,7, as discussed
below.

The measured g 2ð Þ
ab allow us to reconstruct the two-photon density

matrix, r, using quantum state tomography and maximum-likelihood
estimation27,28. From r, we define an interaction matrix, ~r, by factoring
out the linear response, such that ~r directly quantifies the nonlinearity
(Methods). The density matrix approach is necessary to account for
decoherence and technical imperfections. The probability density of
two interactings1 photons, g 2ð Þ

zz~~rzz,zz, and the nonlinear phase,
w~arg ~rzz,{{

� �
, acquired by the s1s1 pair relative to a non-

interacting s2s2 pair, are shown in Fig. 2a, b for D/2p5 14 MHz.
The time dependence allows us to extract the nonlinear phase as a
function of the photon–photon separation. Clearly visible is the bunch-
ing of photons, that is, an increased probability for photons to exit the
medium simultaneously (t1 < t2), and a substantial nonlinear two-
photon phase shift of 20.5 rad in that region. Figure 2c shows the
intensity correlation in the dissipation-dominated antibunching regime19

at D 5 0 and in the dispersive regime at jDj. C, where there is bunch-
ing. Figure 2d displays the nonlinear phase for two different detunings.
The transition from the dissipative regime to the dispersive is summa-
rized in Fig. 3a, b. In the dispersive regime, the nonlinear phase shift,
w(t 5 0), can reach (20.32 6 0.02)p, at a detuning D/2p5 9 MHz and
a linear transmission of order 50%. The observed signals, particularly
w, are asymmetrical under a sign change of D.

The origin of the quantum nonlinearity underlying these observa-
tions is explained by the following simple model. The repulsive van der
Waals interaction between two Rydberg atoms, V(r) 5 BC6/r6, tunes
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Figure 1 | Photons with strong mutual attraction in a quantum nonlinear
medium. a, b, A linearly polarized weak laser beam near the transition
| gæ R | eæ at 780 nm is sent into a cold rubidium gas driven by a control laser
near the transition | eæ R | ræ at 479 nm. Strong nonlinear interactions between
s1-polarized photons are detected using photon–photon correlation functions
of the transmitted light for a set of different polarization bases, as determined by
a quarter-wave plate (QWP), a half-wave plate (HWP) and a polarizing beam
splitter (PBS). Here s2 photons serve as a phase reference. c, Transmission
spectra (top) and phase shift (bottom) fors1 photons with an incoming rate of
Ri 5 0.5ms21 (blue squares) or Ri 5 5ms21 (green circles), for a control field
red-detuned by D/2p5 15 MHz. The blue line shows the theoretical spectrum.
The spectrum at high probe rate approaches that of the undriven two-level

system (dashed grey; see also Supplementary Fig. 2). The solid vertical line
corresponds to the EIT resonance. d, Photon bunching and two-photon bound
state. Theoretically predicted photon–photon correlation function in the
Schrödinger equation approximation (top, blue line) for D/2p5 14 MHz, with
a potential well of width 2rB (bottom, green line). The bound state (bottom, red)
and the superposition of scattering states (bottom, black) form the initial
wavefunction, y 5 1 (bottom, dashed blue). The two-photon bound state
results in the observed bunching in the correlation function, g 2ð Þ

zz< yj j2 (top,
grey circles), where time has been converted into distance using the group
velocity, vg. The boundary effects resulting from the finite extent of the atom
cloud become important for | r | $ 5rB.
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Figure 2 | Propagation of
interacting photon pairs.
a, b, Measured second-order
correlation function (a) and
nonlinear phase shift (b) of
interacting photon pairs at D 5 2.3C.
The photons are detected at times t1

and t2. c, Second-order correlation
function displayed as a function of
the time difference, | t | 5 | t1 2 t2 | ,
between the photons, showing the
transition from antibunching on
resonance (D 5 0, green) to
bunching at large detuning
(D 5 2.3C, blue). Points are
experimental data; lines are full
numerical simulations. All g 2ð Þ

zz

measurements are rescaled by their
value at t . 1.5ms (Supplementary
Information). d, Nonlinear phase
shift versus | t | for two different
detunings (D 5 1.5C, purple, and
D 5 2.3C, blue). The 1 s.d. error is
630 mrad, dominated by photon
shot-noise.

RESEARCH LETTER

2 | N A T U R E | V O L 0 0 0 | 0 0 M O N T H 2 0 1 3

Macmillan Publishers Limited. All rights reserved©2013



the doubly excited Rydberg state far off EIT resonance for distances
jrj, rB, where rB~

ffiffiffiffiffiffiffiffiffiffi
C6=c6

p
is the Rydberg blockade radius14,29,30, C6 is

the van der Waals coefficient, c~V2
c

�
4Dj j is the EIT linewidth at

detuning Dj j?C and Vc is the Rabi frequency of the control field.
Although the phase shift that would originate from the bare jgæ R jeæ
probe transition is suppressed by EIT for photons with large separation
in the medium (jrj. rB), the light acquires this phase shift for small
photon separations (jrj# rB) (Fig. 1c). This explicit dependence of
the refractive index on photon–photon separation can be modelled
in one dimension as a potential well with a characteristic width of
2rB. Qualitatively, a substantial two-photon phase shift arises for
(rB=la)(C=jDj)>1, where la is the resonant attenuation length in the
medium, that is, for sufficiently high atomic density. Furthermore, the
probe field must also be compressed in the transverse direction to a
waist size w , rB to ensure that interactions occur. Using the Rydberg
state 100S1/2, and for Vc/2p5 10 MHz, we obtain rB < 18mm at
detunings of a few C, la 5 4mm at the peak density, and w 5 4.5mm,
fulfilling the conditions for strong interactions for Dj j=5C .

The propagation of s1-polarized photon pairs in such a medium
can be understood by first considering an idealized situation with no
decoherence between the Rydberg state and the ground state. Then the
steady state in a one-dimensional homogenous medium can be described
by a two-photon wavefunction, y(z1, z2), whose evolution is approxi-
mately governed by a simple equation19 in terms of the centre-of-mass
coordinate, R 5 (z1 1 z2)/2, and the relative coordinate, r 5 z1 2 z2:

i
Ly

LR
~4la iz

2D

C
{V rð ÞV

2
c

C2

� �
L2y

Lr2
z
V rð Þ

la
y ð1Þ

Here the effective potential, V rð Þ~ iz2(D=C)(1z2r6
�

r6
B)

� �{1
,

approaches (i 1 2D/C)21 inside the blockaded volume (jrj, rB) and
approaches zero outside. The solution relates approximately to our
measurements in the time domain for small jtj via

y R~L,r~vgt
� 	

<
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g 2ð Þ
zz tð Þ

q
eiw tð Þ (see Supplementary Information

for the exact relation). Far off resonance ( Dj j?C , Vc), equation (1)
corresponds to a Schrödinger equation with R playing the part of
effective time. The photons’ effective mass, m / 2C/16laD, can be
positive or negative depending on the sign of the detuning, D.
Because the sign of the potential also changes with D (potential well
for D , 0; barrier for D . 0), the effective force (F in Fig. 1a) in both
cases is attractive and the resulting dynamics similar (Supplementary
Information). However, the potential for D , 0 also has additional
features near the edges of the well, corresponding to a Raman res-
onance jgæ R jræ for the interaction-shifted Rydberg state at some
interatomic distance near jrj5 rB. These features are probably
responsible for the deviation from symmetry (or antisymmetry) under
the change of the sign of D displayed in Fig. 3a, b.

In the experimentally relevant regime, the effective potential sup-
ports only one bound-state, yB(r) (Fig. 1d). The initial wavefunction,
y(R 5 0, r) 5 1, is a superposition of yB(r) and the continuum of
scattering states. The accumulation of probability near r 5 0 can then
be understood as arising from the interference between the bound and
scattering states that evolve at different frequencies, and the observed
bunching feature in g 2ð Þ

zz reveals the wavefunction of the two-photon
bound state (Supplementary Information). As shown in Fig. 3a, b,
the solution of the Schrödinger-like equation (1) with a simplified
d-function potential captures the essential features of the nonlinear
two-photon propagation. Additional experimental evidence for the
bound-state dynamics is obtained by tuning the probe field relative
to the EIT resonance, thereby varying the strength of the two-photon
interaction potential. As the probe detuning approaches the Raman
resonance, the difference in refractive indices inside and outside the
blockade radius increases and the potential deepens (Supplementary
Information and Fig. 1c). Consequently, the bound state becomes
more localized and the bunching, quantified by g 2ð Þ

zz 0ð Þ, is enhanced
(Fig. 3c, d). We note that the size of the two-photon bound state and,
correspondingly, the width of the bunching feature, 2tbvg < 70mm,
exceed the width of the potential well, 2rB < 35mm, as expected for a
potential with one weakly bound state.

Figures 2 and 3 also show the results of our full theoretical model, in
which we numerically solve the set of propagation equations for the
light field and atomic coherences. The model incorporates the longitu-
dinal atomic density distribution and the decoherence of the Rydberg
state (Supplementary Information). These simulations are in good
agreement with our experimental results and the predictions of the
simplified model (equation (1)), confirming that the evolution of the
two-photon wave packet is dominated by the attractive force between
the photons.

Finally, we study the quantum coherence and polarization properties
of the transmitted photon pairs. In Fig. 4a, we compare the purity of
the two-photon density matrix, r(t), which includes photon interac-
tions, with the purity of the product of one-photon matrices,
r(1)

fl r(1), for non-interacting photons. At large photon separation,
t, the purity, P(t), of the two-photon density matrix is dominated by
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Figure 3 | Dependence of the photon–photon interaction on detuning.
a, b, Equal-time two-photon correlation, g 2ð Þ

zz 0ð Þ (a), and nonlinear phase, w(0)
(b), versus detuning, D, from the intermediate state, | eæ. Blue lines are full
theoretical simulations and black lines are the result of the Schrödinger
equation approximation, assuming a simplified d-function potential. Vertical
error bars represent 1 s.d. and horizontal error bars are 60.5 3 2pMHz.
c, d, Equal-time correlation function (c) and spatial extent of the bunching
feature (d) versus Raman detuning, d, from the EIT resonance | gæ R | ræ for
D 5 3C, showing increased photon–photon attraction due to a deeper potential
near Raman resonance. The characteristic bunching timescale, tb, is the half-
width of the cusp feature of g 2ð Þ

zz, defined at half-height between the peak value
at t 5 0 and the local minimum closest to t 5 0. Error bars, 1 s.d. The
theoretical model (solid line) breaks down close to the Raman resonance at
d 5 1.3 3 2pMHz < V2

c /4D, where the single-photon component of the probe
field is strongly absorbed.
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the one-photon decoherence due to partial depolarization of the trans-
mitted light (Supplementary Information). This depolarization is
attributed to the difference in group delay, td, between thes1 photons
and the fasters2 photons (tsz

d {ts{

d ~280 ns), which is not negligible
compared with the coherence time of the probe laser (650 ns). At the
same time, s1 photons bound to each other travel faster and are more
robust against this decoherence mechanism, as evidenced by the greater
purity at small t. Even in the presence of this depolarization, the coher-
ent nonlinear interaction in the dispersive medium produces entan-
glement in the outgoing polarization state of two photons. We quantify
the degree of polarization entanglement in terms of a time-dependent
concurrence, C(t) (Fig. 4b and Supplementary Information). The
obtained value C(0) 5 0.09 6 0.03 indicates deterministic entangle-
ment of previously independent photons on passage through the
quantum nonlinear medium. The measured value is in reasonable
agreement with the theoretical prediction, Cth(0) 5 0.13, calculated
for a conditional phase w(0) 5p/4, purity P(0) 5 0.73 and 50% s1

linear transmission.
In our experiment, the transmission and achievable nonlinear phase

are limited by the laser linewidth, the atomic motion and the available
control-field intensity. These technical limitations can be circumvented
by using stronger control lasers with improved frequency stability and
colder atomic clouds trapped in both the ground state and the Rydberg
state. Although in our present system the nonlinear phase would not be
uniformly acquired by a bandwidth-limited two-photon pulse, a high-
fidelity two-photon phase gate may be achievable using, for example, a
counter-propagating geometry and greater optical depths14.

The realization of coherent, dispersive photon–photon interactions
opens several new research directions. These include the exploration of a
novel quantum matter composed from strongly interacting, massive
photons9. Measurements of higher-order correlation functions may give
direct experimental access to quantum solitons composed of a few inter-
acting bosons24, or to the detection of crystalline states of a photonic gas9.
By colliding two counter-propagating photons, it may be possible to
imprint a spatially homogeneous phase shift of p on the photon pair,
corresponding to a deterministic quantum gate14 for scalable optical
quantum computation13. Finally, by accessing other Rydberg states
via, for example, microwave transitions, it may become possible to con-
trol the state of multiphoton pulses with just one quantum of light,
thereby realizing a single-photon transistor6,31 for applications in quan-
tum networks, and the creation of multiphoton entangled states.

METHODS SUMMARY
The experimental setup is detailed in ref. 19. The average resonant optical
depth along the atomic cloud is 22, and the peak atomic density is 1012 cm23.

Probe pulses at an average photon rate of 1.6ms21 are sent into the cell during
the 5.5-ms dark-time periods of a modulated optical trap. For the quantum state
tomography, we measure the photon coincidence rates in six polarization bases,
{q, h} 5 {p/4,p/4}, {0, 0}, {p/8,p/8}, {0,p/16}, {p/8,p/16} and {p/8, 0}, where q and
h are the angles of the quarter- and half-wave plates. The duration of the coincidence
time bins, varying between 20 and 80 ns, is chosen to capture the temporal dynamics
of the correlation functions with reasonable signal-to-noise ratio. For each (t1, t2)
time bin, we numerically optimize a Hermitian, positive-semidefinite two-photon
density matrix, r(t1, t2), and one-photon density matrix, r(1)(t). To extract the
nonlinear phase from r(t1, t2), we rescale for the linear dispersion and loss effects
by defining the interaction matrix ~ri,j t1,t2ð Þ~ri,j t1,t2ð Þ

�
r 1ð Þ t1ð Þ6r 1ð Þ t2ð Þ
� �

i,j in
the circular-polarization basis. The interaction matrix generalizes the standard g 2ð Þ

a,b

definition to account for nonlinear phases and decoherence, and all its elements
are equal to 1 in the absence of nonlinearity.

Online Content Any additional Methods, Extended Data display items and Source
Data are available in the online version of the paper; references unique to these
sections appear only in the online paper.
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METHODS

The experimental setup is detailed in ref. 19, with the following modifications. The
dipole trap is periodically switched off with a 5.5-ms half-period, and the measure-
ments are performed during the dark time to avoid inhomogeneous broadening.
Photons detected in the first 1.5ms after the dipole trap is turned off are not
included in the analysis, to guarantee steady-state EIT. For each experimental
cycle, data are accumulated over 400 periods of the dipole-trap modulation. The
trapped atomic cloud has a longitudinal root mean squared length of sax 5 36mm
and a peak atomic density of r0 5 1012 cm23. The average resonant optical depth
is 22, with less than 20% variation over the measurement time. The probe and
control beams are counter-propagating to reduce the residual Doppler broadening
to 50 3 2p kHz. Linearly polarized probe laser light enters the medium at an
average photon rate of 1.6ms21. Quarter- and half-wave plates at angles q and
h, respectively, followed by a polarizing beam splitter, project the outgoing probe
light onto a chosen polarization basis (Fig. 1a). Four single-photon counting
modules measure the pair correlation events at times t1 and t2. Normalized sec-
ond-order correlation functions, g 2ð Þ

ab , are calculated using the photon coincidence
counts between the different detectors and the average count rates. The time bins
(80 ns for g 2ð Þ

ab t1,t2ð Þ and 20 or 40 ns for g 2ð Þ
ab tð Þ) were chosen to capture the temporal

dynamics of the correlation functions with reasonable signal-to-noise ratio.
In the quantum state tomography, we numerically optimize a Hermitian, positive-

semidefinite two-photon density matrix
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. Because the two photons
have the same frequency and spatial mode, there is no coherence between the
3 3 3 symmetric and 1 3 1 antisymmetric subspaces28. We measure in six required
polarization bases, chosen as {q, h} 5 {p/4,p/4}, {0, 0}, {p/8,p/8}, {0,p/16}, {p/8,p/16}
and {p/8, 0}, to set the ten degrees of freedom in r(t1, t2). The optimization follows
the maximum-likelihood estimate27, where all coincidence measurements are con-
sidered. The one-photon density matrix, r(1)(t), is reconstructed using the same
technique. To extract the nonlinear phase from r(t1, t2), we rescale for the linear

dispersion and loss effects by defining the interaction matrix ~ri,j t1,t2ð Þ~ri,j t1,t2ð Þ
.
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. The

interaction matrix generalizes the standard definition of g(2) to account for non-
linear phases and decoherence, and all its elements are equal to 1 in the absence of
nonlinearity. In Supplementary Fig. 3, we compare the measured photon–photon
correlation functions with those calculated from ~r (see also Supplementary Fig. 4).
The colour maps in Fig. 2 presenting values derived from r(t1, t2) have been
smoothed using an unweighted, nearest-neighbour, rectangular sliding average.
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