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Methods Each second-long experimental cycle has a
12 ms detection period, which consists of 20 µs measure-
ment times, a time window arbitrarily chosen to be much
longer than the EIT lifetime to allow the continuous mea-
surement of signal photons, interleaved with 20 µs prepa-
ration times that ensure the atoms are optically pumped
to the |g〉 state. For cross correlation measurements such
as Fig.2(a) an average of approximately 8000 experimen-
tal cycles were used.
The temperature of the cloud in the dipole trap is

about 120 µK corresponding to a measured atomic de-
coherence rate of γ0/2π ≃ 100 kHz, dominated by the
Doppler broadening. The signal path detection efficiency
is qs ≃ 0.3 including the fiber coupling efficiency and pho-
todetector quantum efficiency. The optical cavity has a
waist size of 35 µm, length of 13.7 mm, and out-coupling
efficiency of 66%.
The single-photon Rabi frequency for σ+ polarized

light is 2g = 2π × 2.5 MHz. Thus, the single-atom
cooperativity for an atom on the cavity axis (along z)
at an antinode of the cavity standing wave is given by
η = 4g2/κΓ = 8.6 > 1, i.e. the system operates in the
strong coupling regime of cavity quantum electrodynam-
ics. The cavity resonance frequency matches the atomic
frequency |d〉 → |e〉
Detection and transmission probabilities. The

probability to observe a probe photon when a cavity pho-
ton is present and a signal photon is propagating through
the EIT window at τ = 0 is given by [S20]
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Here, η = 4.3 is the spatially-averaged cavity coop-
erativity, D is the effective optical density that over-
laps with the cavity mode, Ω is the control Rabi fre-
quency, κ = 2π× 140 kHz is the decay rate of the cavity,
γ ≃ γc+γ0, γ0 ≈ 2π×100 kHz is atomic decoherence rate
in the absence of cavity photons, γc is cavity-induced de-
coherence, and Γ is the Cs excited-state decay rate. The
decoherence rate, γc, caused by cavity light scattering
manifests itself as: (1) loss of atomic coherence given by
〈nin

c 〉κη/(1+η)2 where 〈nin
c 〉 is the mean σ+-polarized in-

put cavity photon number, (2) reduction of signal trans-
mission as a result of inhomogenous coupling of cavity
light to atoms (see below). For the anti-correlation data
shown in the inset of Fig. 2a, when we take into account
the cavity blocking due to an atom in state |d〉, we ob-
tain 4ε0 = 0.1 and a blocking probability for σ+ light of
P = 1 − (1 − √

4ε0)
2 = 0.55. This is in good agreement

with the measured probability of 1 − g
(2)
sσ+(0) = 0.59(7).

A detailed theoretical treatment of the cavity interaction
with atomic ensemble is given in Ref. [25].
In the nondestructive detection where horizontally-

polarized cavity light is used, the detection probability
is defined as the field amplitude of the transmitted σ+

light, which interacts with atoms in state |d〉 as described
in Ref. [23], combined with the field amplitude of σ−

light on the output polarization beamsplitter. The field
amplitude addition results in the factor 1/4 in Eq. 1.
In principle, this reduction can be avoided by imping-
ing only σ+ light onto an impedance-matched cavity and
measuring the reflected photons. In our present lossy cav-
ity, the reflection in the absence of signal photons causes
a large background for the probe light.
Cavity-induced decoherence reduces the transmission

probability of the signal photon and the EIT coherence
time [S20]. The signal transmission in the presence of
cavity photons is given by:

Ts = T0 exp

(

− D
1 + Ω2/Γγ

)

(3)

where T0 = exp
(

− D′

1+Ω2/Γγ0

)

is the EIT transmission

corresponding to atoms outside the cavity waist and D′

is the corresponding optical density.
An additional limit to the signal transmission is caused

by the standing-wave nature of the cavity light in com-
bination with the uniform distribution of atoms between
nodes and antinodes of the cavity. Once the signal is
detected, the spatial mode of the polation is projected
onto the cavity mode resembling a grating imprinted onto
the polariton structure. This effect leads to reduction in
transmission of the signal. The overlap between the po-
lariton before and after detection of a probe photon can
be calculated as

Fp =
1

π

∫ π

0

η cos2(θ)

1 + η cos2(θ)
dθ = 1− 1√

1 + η
(4)

where θ = kz, k is the wave-number of cavity light and
z is the position along the cavity axis. At large coop-
erativity, η ≫ 1, the expected maximum transmission
approaches 100%. For our system parameters this eval-
uates to about 70%.
Also, the atomic cloud extended beyond the cavity re-

gion introduces additional signal transmission loss. This
is because the signal photon wave-packet is localized in-
side the cavity region upon detection of a probe photon
and therefore its spectral bandwidth exceeds the EIT
bandwidth. Hence, after detection via the cavity, the
signal photon propagating through the EIT window ex-
periences dispersion and loss. Our numerical simulations
predicts a loss of 30% in signal transmission given the
experimental parameters. In principle, this loss can be
eliminated by removing atoms outside the cavity region.
Quantum correlation between probe and signal

photons. The mean photon rate entering the cavity can
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be calculated from the total detected photon rate exiting
the cavity, Rs=0

c , in absence of signal photons as

〈Rin
c 〉 = Rs=0

c

qd(
T

T +L )
(5)

where qd = 0.3 accounts for detection losses including
fiber coupling, filter losses and photodetector quantum
efficiency and T

T +L = 0.66 is the cavity out-coupling ef-
ficiency with L and T being mirror loss and transmis-
sivity, respectively. In the following, we combine qd and
the cavity out-coupling efficiency into a single parameter
qp. The mean cavity photon number in absence of signal
photons is then 〈nin

c 〉 = Rin
c τc where τc = (κ/2)−1. The

mean signal photon number in the relevant time window,
i.e. the EIT life time τ

EIT
= (Ω2/(ΓD) + γ0)

−1, is given
by 〈nin

s 〉 = Rin
s τ

EIT
/qs where Rin

s /qs is the signal pho-
ton rate entering the medium and qs = 0.3 accounts for
detection losses. In absence of population in state |d〉,
the linearly polarized cavity light is rotated by atoms in
state |g〉 due to the differences in the coupling strengths
for σ+ and σ− polarized light interacting with state |g〉
and excited states. Ideally, this rotation is constant and
we compensate for it with a waveplate at the output of
the cavity. However, the shot-to-shot atom number fluc-
tuation during loading provides a varying background,
αqp〈nin

c 〉, that dominates the probe port at low signal
photon rates. We typically measure a maximum frac-
tional background of α ≈ 3 × 10−3 of the total detected
cavity photons. The detection events consists of a back-
ground given by 〈b〉 = αqp〈nin

c 〉+〈rp〉, where 〈rp〉 denotes
the dark counts of the probe detector Dp. We define the
detected mean signal photon number 〈ns〉, true detection
events 〈t〉 and total detected mean probe photon number
〈np〉 as

〈ns〉 = qsTs〈nin
s 〉+ 〈rs〉 (6)

〈t〉 = (ε0 + ǫb)qp〈nin
c 〉〈nin

s 〉 (7)

〈np〉 = 〈t〉+ 〈b〉 = (ε0〈nin
s 〉+ ǫb〈nin

s 〉+ α)qp〈nin
c 〉

+〈rp〉 (8)

where 〈rs〉 denotes the dark-counts of the signal detec-
tor Ds and ǫb = εdfs is the probability of detecting a
probe photon for a decohered atoms in state |d〉, εd, mul-
tiplied by the fraction of signal photons, fs, incoherently
mapped to state |d〉 via absorption. The coincidence
counts are

〈nsnp〉 = ε0qp〈nin
c 〉 × Tsqs〈nin

s 〉+ (9)

(α+ ǫb〈nin
s 〉)qp〈nin

c 〉 × Tsqs〈nin
s 〉+

Tsqs〈nin
s 〉〈rp〉+ ((ε0 + ǫb)〈nin

s 〉+
α)× qp〈nin

c 〉〈rs〉+ 〈rp〉〈rs〉. (10)

Here, we assume that the conditional signal transmission
is approximately equal to the mean signal transmission,
Ts. Note that all terms, except the first, are caused by
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FIG. S1. Observed cross-correlation for double-pass signal
beam, measured with 〈nin

c 〉 = 4.4 and Ω/2π = 2.9 MHz. The

fitted values are g(2) = 4.4(5), τ< = 1.3(3) µs, and τ> = 0.5(2)
µs.

background sources. The cross-correlation function, ne-
glecting the detectors’ dark counts, can be approximated
as

g(2)(τ = 0) =
〈nsnp〉
〈ns〉〈np〉

≃ 1 + β

β + 〈nin
s 〉 (11)

where β =
α+ǫb〈n

in

s
〉

ε0
. When background processes are

negligible (α, ǫb, 〈rs〉, 〈rp〉 ≪ 1), the maximum cross-
correlation function at τ = 0 is simply approximated by
g(2) ≃ 1/〈nin

s 〉 for 〈nin
s 〉 < 1. Note that in the regime

where 〈rs〉, 〈rp〉 ≪ 1, the correlation function g(2) is in-
dependent of the cavity photon number as both the de-
tection probability and background scale linearly with it.
However, the measured g(2)(τ = 0) drops at low cav-
ity photon numbers where probe-part dark counts, 〈rp〉,
are not negligible compared to the detected cavity mean
photon number.
To further increase the photon-photon interaction,

we carried out an experiment to increase the effective
optical density by transmitting the signal through the
atomic ensemble twice. The retro-reflected signal is col-
lected by a 90/10 fiber-beam splitter used at the signal
input. We simultaneously measure auto-correlations of

g
(2)
ss = 1.6(3), g

(2)
pp = 5.6(1) and the cross-correlation as

plotted in Fig. S1.

Quantum efficiency. The conditional nondestruc-
tive quantum efficiency of detecting a signal photon with
mean input photon number 〈nin

s 〉 ≪ 1 can be written as

Q = εqp〈nin
c 〉 ≃ 〈nsnp〉 − 〈np〉〈ns〉

〈ns〉
(12)
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FIG. S2. The total probability ε calculated from the slope of
the linear fits to the data in Fig. 3. The fitted curve represents
the theory using Eq.13 with fitted optical density D = 4(2).

where ε is the total probability of having a probe photon
given a signal photon traveling through the medium. It
can be obtained from the asymptotic quantum efficiency
and integrating the area under the g(2) function as

ε =
Q

qp〈nin
c 〉 =

1

qp〈nin
c 〉(1− 〈nin

s 〉)

∫

(g(2)(τ) − 1)Rpdτ

= ε0
τc + τ

EIT

τc
. (13)

The probability ε is calculated from the slope of the fit-
ted lines in Fig. 4c and is plotted for different control
Rabi frequencies in Fig. S2. These extracted probabili-

ties agree with theoretical predictions.

Detection probabilities and QND requirements.

The QND requirements can be quantified using the mea-
surement error, ∆X , the transfer coefficient of input sig-
nal to meter (probe), TM , and transfer coefficient of in-
put signal to output signal, TS [S13]. Using the formal-
ism provided by Ralph et al. [Phys. Rev. A 73, 012113
(2006)], one can link the measurement probabilities in the
discrete variable (DV) regime and TS and TM in continu-
ous variable (CV) regime through different fidelity mea-
sures. The transfer coefficients in terms of measurement
fidelity, FM , and QND fidelity, FQND, can be written as

TM = (
2

F 2
M

− 1)−1

TS = (
2

F 2
QND

− 1)−1

where

FM = P11 + P01 =
〈np〉
〈nin

s 〉
FQND = P11 + P10 = Ts.

To estimate the measurement error in the CV regime,
the conditional variance of the signal is measured and is
compared to the shot-noise limit. In the DV regime, how-
ever, as the particle aspect of photons are detected and
not the wave aspect, the conditional correlation function,

g
(2)
ss|m (signal auto-correlation function conditioned on de-

tecting a meter photon), can be used instead to quantify
the measurement error. In particular, a QND measure-

ment satisfies g
(2)
ss|m < 1 (quantum state preparation)and

TS + TM > 1.


