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Deterministic optical quantum logic requires a nonlinear quantum
process that alters the phase of a quantum optical state by π
through interaction with only one photon. Here, we demonstrate
a large conditional cross-phase modulation between a signal field,
stored inside an atomic quantum memory, and a control photon
that traverses a high-finesse optical cavity containing the atomic
memory. This approach avoids fundamental limitations associated
with multimode effects for traveling optical photons. We measure
a conditional cross-phase shift of π=6 (and up to π=3 by postse-
lection on photons that remain in the system longer than aver-
age) between the retrieved signal and control photons, and
confirm deterministic entanglement between the signal and con-
trol modes by extracting a positive concurrence. By upgrading to
a state-of-the-art cavity, our system can reach a coherent phase
shift of π at low loss, enabling deterministic and universal photonic
quantum logic.

cross-phase modulation | photonic quantum gate | cavity quantum
electrodynamics | electromagnetically induced transparency |
single-photon Kerr nonlinearity

Universal quantum gates (1, 2) can be implemented with an
interaction that produces a conditional π-phase shift by one

qubit on another (3). For photonic qubits, this requires an as-of-
yet–unrealized strong cross-phase nonlinear interaction at the
single-photon level. Photons do not directly interact with each
other, and hence must be interfaced in a medium with a giant
nonlinearity while preserving optical coherence (4, 5). The
strong nonlinearities introduced by interacting Rydberg atoms
(6–9) and cavity quantum electrodynamic (cQED) systems (10–
12) have led to the observation of up to π-phase shifts between
two propagating photons in the same mode. This type of quan-
tum phase switch can be used to sort photons and implement a
Bell state analyzer (13). The realization of a deterministic and
universal optical gate, however, requires cross-phase modulation
between distinct optical modes. Using a photon–atom gate in
a cQED system, photon–photon entanglement (14) has been
demonstrated. However, large conditional photon–photon phase
shift remains an experimental challenge. For light pulses prop-
agating in nonlinear fibers (15) and nonlinear slow-light media
(16, 17), cross-phase modulation on the order of microradians
per photon has been observed. In a pioneering cQED experi-
ment two decades ago, Turchette et al. (18) measured the av-
erage polarization rotation of a weak continuous probe beam by
another beam copropagating in the same cavity, and extrapo-
lated a nonlinear phase shift of 0.28 rad per photon. However,
the characteristic time of the nonlinearity (the cavity lifetime) in
that experiment was much shorter than the photon wavepacket
duration necessary to spectrally separate the two modes, which
precludes the modulation of the entire wavepacket (19). Very
recently, a much smaller but conditional cross-phase modulation
of 18 μrad by a single postselected photon was measured in a
nonlinear slow-light system using electromagnetically induced
transparency (EIT) (20). However, as shown by Shapiro (21),
and in an extension to EIT by Gea-Banacloche (22), locality and

causality prohibit high-fidelity π-phase shifting operations be-
tween traveling photons.
To realize a giant optical Kerr effect that is not subject to

Shapiro’s no-go theorem, we coherently store a weak signal pulse
in an atomic quantum memory as a collective spin excitation via
EIT (23). A control photon traveling through a high-finesse
cavity containing the EIT medium interacts with the entire col-
lective atomic excitation simultaneously, and the stored signal
light is retrieved after detecting the control photon (Fig. 1). A
similar setup was previously used to implement an optical tran-
sistor whose transmission depended on the stored photon num-
ber in the quantum memory (24). That work demonstrated that
one stored photon can block the transmission of many cavity
photons resonant with the atomic transition. The current ex-
periment instead investigates the dispersive regime of atom-
cavity coupling: a control photon induces a differential light shift
on the two atomic states in the collective excitation, thus shifting
the optical phase of the signal light retrieved later. Conversely, a
stored signal photon changes the center frequency of the cavity
and shifts the phase of a weak control pulse. We measure this
cross-Kerr modulation on both signal and control light, condi-
tioned on the detection of a photon in the other mode, while
maintaining high fringe visibility.

Methods
Our system consists of an ensemble of laser-cooled 133Cs atoms trapped in a
dipole trap tightly focused at the center of a high-finesse optical cavity (Fig.
1A). Initially, the atoms are optically pumped into the state jgæ. We then
make use of the resonant Λ-type energy-level structure, jgæ↔ jcæ↔ jdæ, to
induce EIT. Signal light resonant with the jgæ↔ jcæ transition slowly propa-
gates through the atomic medium while its group velocity is controlled by a
strong copropagating coupling beam resonant with the jdæ↔ jcæ transition
(Fig. 1B). By adiabatically switching off this coupling beam (Fig. 1C), the

Significance

Strong, coherent interactions between individual photons can
revolutionize communication and computation technology. An
interaction between two photons that changes their relative
phase by 180° could serve as the basis for universal quantum
logic. Realizing such interaction, however, has been a grand
experimental challenge. We use atoms trapped between high-
reflectivity mirrors to make two individual photons interact
strongly with each other. We demonstrate that the phase of a
light wave can be changed by up to 60° by a single light
quanta. With today’s technology, this approach may enable
the realization of deterministic quantum gates.

Author contributions: K.M.B., M.H., Y.D., and V.V. designed research; K.M.B., M.H., and Y.D.
performed research; K.M.B., M.H., and Y.D. analyzed data; and K.M.B., M.H., Y.D., and V.V.
wrote the paper.

The authors declare no conflict of interest.

This article is a PNAS Direct Submission.
1To whom correspondence should be addressed. Email: vuletic@mit.edu.

This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10.
1073/pnas.1524117113/-/DCSupplemental.

9740–9744 | PNAS | August 30, 2016 | vol. 113 | no. 35 www.pnas.org/cgi/doi/10.1073/pnas.1524117113

http://crossmark.crossref.org/dialog/?doi=10.1073/pnas.1524117113&domain=pdf
mailto:vuletic@mit.edu
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1524117113/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1524117113/-/DCSupplemental
www.pnas.org/cgi/doi/10.1073/pnas.1524117113


signal photon is stored in the ensemble as an atomic coherence between the
jgæ and jdæ states. In the absence of control photons, we typically store and
retrieve more than 10% of the input signal pulse when we switch on the
coupling laser again after 2 μs of storage. This retrieval efficiency depends
on the ensemble optical depth (OD) and decoherence rate (γ0) of the atomic
coherence, measured to be OD= 7 and γ0=2π = 50 kHz, respectively.

To measure the conditional phase shift ϕ imprinted by one control photon
on the stored signal field, control light (a weak coherent state with less than
one photon on average during the storage time) impinges on the optical
cavity, and light-shifts the atomic levels. The resulting phase shift of the
atomic excitation is mapped onto the signal light upon retrieval, and is
measured by comparison with a 30-MHz detuned reference pulse that
travels along the signal path, and matches the temporal shape and ampli-
tude of the retrieved signal light. (The detuning was chosen to limit atomic
heating by absorption of the reference beam while ensuring that the
resulting 33-ns beat note could be resolved by our detection system.) The
reference and retrieved signal light mix on a photodetector and are de-
tected as photon clicks. These arrival times are binned by phase into a single
fringe after correcting for the drift of the path length difference between
signal and reference beams, which is separately measured during each 0.5-s-
long experimental cycle. The conditional nonlinear phase shift is the
difference between the measured signal phase when we detect one trans-
mitted control photon in the conditioning window, compared with the
signal phase when no control light is applied (Fig. 1D). To construct such a

curve, data were typically accumulated for 600 experimental cycles, or
∼250,000 individual storage–retrieval sequences.

Results
Fig. 2A shows the measured conditional signal phase shift as a
function of the detuning Δ between the input control light and
the atomic transition jdi↔ jei. The phase shift results from the
light shift δ= η  κ0  Re½χ�=2 of the control photon on the atomic
state jdi. Here, χ = ðð2Δ=ΓÞ+ iÞ=ð1+ ð2Δ=ΓÞ2Þ, η= 4g2=κ0Γ= 3.8
is the spatially averaged cavity cooperativity (ref. 25 and Sup-
porting Information), κ0 = 2π × 150 kHz is the measured empty-cavity
linewidth, 2g= 2π × 1.7 MHz is the effective single-photon Rabi
frequency, and Γ= 2π × 5.2 MHz is the excited-state decay rate.
The control-induced nonlinear atomic phase shift is then approxi-
mately ϕ= δ · τ, where τ= 1=κ is the mean interaction time, and
κ= κ0ð1+ ηIm½χ�Þ (25) is the increased cavity linewidth in the pres-
ence of a signal photon. We measure a conditional single-photon
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Fig. 1. Scheme for imprinting large single-photon phase shift onto stored
light. (A and B) A signal photon traveling orthogonal to the cavity axis is
stored as an atomic coherence between states jgi= �

�S1=2, F = 3,mF = 3i and
jdi= �

�S1=2, 4,4i via the EIT process created by coupling light resonant with the
jdi↔ jci= �

�P3=2, 3,3i transition. A control photon resonant with the optical
cavity, and detuned by Δ from the jdi to jei= �

�P3=2, 5,5i transition, is sent
through the cavity during the storage time. The signal photon is retrieved
after the control photon leaves the cavity. (C) The experimental signal
leakage and retrieval (blue), and control (red) light pulses are shown as a
function of time. (D) The phase of the retrieved signal light is measured
without control light (black), conditioned on not detecting a transmitted
control photon (blue), and conditioned on the detection of a transmitted
control photon (red) by its interference with a copropagating reference
beam (not shown). In this and the following figures, the error bars represent
±1 SD of statistical error.
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Fig. 2. Conditional phase shift induced by a single photon. (A) The phase
shift of the stored signal field, conditioned on detecting a control photon, is
plotted as a function of control-atom detuning Δ. The solid line is the model
prediction for a single control photon in a cavity with cooperativity η= 3.8;
the dashed line is this same prediction including corrections for multiple
control photons (mean recovered signal photon number hnsi = 0.3, mean
control photon number hnci = 0.4). The Inset plots the measured average
phase shift (black circles) and conditional phase shift (red circles) as a func-
tion of hnci at Δ=2π =−8MHz and hnsi=0.3. The average phase shift fits to a
line (black) with slope of 0.43(1) rad per photon that agrees with the
expected phase shift per cavity photon of 0.38 rad per photon. The red line is
the model’s prediction for the conditional phase shift that accounts for
contributions from multiple photons, as well as false conditioning on back-
ground counts that reduces the measured conditional phase at very small
hnci. (B) The control phase shift ψ , inferred from polarization rotation,
conditioned on the detection of a signal photon. The deviation of the ex-
perimental data from the theoretical model (solid line) can be explained by a
small light-cavity detuning of δc=2π =25 kHz that is included in the model
shown as the dotted line (Supporting Information).
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phase shift of jϕj= 0.4ð1Þ rad at jΔj= 8 MHz, in good agreement
with the theoretical prediction of ϕ= ð1=2ÞηRe½χ�=ð1+ ηIm½χ�Þ,
valid for moderate ηK 6 (see Supporting Information for full
model). The average shift (not conditioned on detecting a control
photon) is linear with hnci, the mean input control photon number
in the 2-μs conditioning window (Inset to Fig. 2A), and is, in prin-
ciple, independent of the stored signal photon number ns (Fig. S1).
The linear slope of 0.43(1) rad per photon is close to the expected
phase shift per cavity photon of 0.39 rad per photon, and to the
conditional phase shift of 0.4(1) rad depicted in Fig. 2A. For
hnci � 1, background counts reduce the measured conditional
phase. For hnciJ 1, the contribution from undetected photons
increases the measured conditional phase. Throughout this pa-
per, we operate at mean photon numbers hnci≤ 0.5.
While the control photon shifts the phase of the retrieved

signal light, the signal light also acts back on the control light.
The cavity resonance is shifted by the stored signal light (26),
which in turn changes the phase of the transmitted control light.
We measure the conditional control phase ψ by using linearly
polarized input light on the cavity path, and measuring its po-
larization change conditioned on detecting one retrieved signal
photon. The weakly interacting σ−-polarized component thus
serves as a phase reference for the strongly interacting σ+-polarized
control light (Fig. S2). This conditional control phase shift ψ is
plotted as a function of control-atom detuning in Fig. 2B.
In fact, the combined control-signal optical state can be ideally

described as a two-mode entangled state jΨi= p00j0s0ci+
p01j0s1ci+ p10j1s0ci+ p11eiθj1s1ci, where 0s (1s) refers to zero
(one) signal photon, whereas 0c (1c) represents a σ− (σ+)-
polarized control photon, pij is the probability amplitude of being
in state jisjci, and θ is the nonlinear interaction phase. (Note that
we are using a single-rail representation, i.e., photon number
basis for the signal light, whereas we are using a dual-rail rep-
resentation, i.e., polarization basis for the cavity light.) Thus, in
the ideal system, we expect ϕ=ψ = θ. In the presence of deco-
herence and loss, the two-mode system must be described by a
density matrix. We reconstruct the reduced density matrix,
ρijði, jef0,1gÞ, of the outgoing signal and control modes by mea-
suring coincidences between these two paths (Supporting In-
formation and Table S1). We extract a nonlinear phase shift of
θ= 0.45ð2Þ rad, and a concurrence (27) of C= 0.082± 0.005
(statistical) ±0.016 (systematic) > 0, after correcting for de-
tection efficiencies and propagation losses (see Table S2 for
error analysis). The positive concurrence demonstrates de-
terministic photon number-polarization entanglement between
the outgoing signal and control light, and is comparable to the
maximal expected concurrence of C= 0.11 for states with the same
coherent amplitudes and conditional phase shift as measured in our
experiment. In practice, this number-polarization entanglement is
difficult to use for quantum computing because single-qubit rota-
tions require nonlinear interactions. A dual-rail (polarization)
representation for both signal and control modes will be pref-
erable in future experiments.

Discussion
At a given moderate cooperativity η (ηK 6), the nonlinear phase
shift takes on its maximum value ϕ ’ η=ð4 ffiffiffiffiffiffiffiffiffiffi

1+ η
p Þ at a cavity-

atom detuning of Δ=Γ=
ffiffiffiffiffiffiffiffiffiffi
1+ η

p
=2, and is accompanied by re-

duced signal transmission Ts=T0 = e−η=2ð1+ηÞ = 0.67 for η= 3.8.
Here, T0 is the signal transmission without control light, and Ts is
the (reduced) signal transmission due to light scattering out of
the cavity mode by an atom in state jdi. Scattering photons into
free space destroys the collective spin excitation associated with
the stored signal photon. Fig. 3A shows this signal recovery
efficiency conditioned on the detection of a control photon.
The solid curve is the theoretical expectation for transmission,
taking into account the signal loss due to the scattering of the
control photon, given by Ts=T0 = expð−ηIm½χ�κ0=κÞ. Additional

cavity-induced losses, not included in the theory, are responsible
for the remaining deviation between the experimental data and
this curve. Although the primary recovery loss is due to scattering
of cavity photons, two other factors reduce the signal recovery.
Because the atomic cloud extends beyond the cavity waist and also
extends over several periods of the cavity standing wave, there is
recovery loss due the inhomogeneous phase shift imprinted by the
cavity photon along the cavity and signal axes, a result of the
spatially inhomogeneous cavity coupling. These effects are de-
scribed in more detail in the supplemental material of ref. 28.
Moreover, the occasional presence of more than one cavity pho-
ton reduces further the signal photon’s survival probability beyond
the expected conditional transmission (shown in Fig. 3A).
As there is uncertainly on the timescale κ−1 when a control

photon enters or exits the cavity, we expect a randomization δϕ
of the nonlinear phase (19) at the level of δϕ=ϕ= ðκτpÞ−1 ∼ 0.25,
where τp = 2 μs is the input control pulse length. This would limit
the visibility of the recovered phase to about 0.99 at ϕ= 0.4 rad.
The visibility of our phase beat note after correcting for the
transmission loss is shown in Fig. 3B. This measurement yields an
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Fig. 3. Signal transmission, signal visibility, and cavity linewidth. (A) The
fractional signal transmission conditioned on detecting a control photon
(black circles), measured at hnci= 0.4 and hnsi= 0.3. The solid line is the the-
oretical expectation accounting only for scattering of control light. The dis-
crepancy is discussed in the text. (B) Fringe visibility of recovered signal light
after correction for the signal loss shown in A, which is the dominant contrast
loss mechanism. The data are consistent with no contrast loss from other ef-
fects (dashed line). (C) The cavity linewidth conditioned on detecting a signal
photon (red circles) and averaged cavity linewidth (black squares), normalized
to the bare linewidth κ0 = 2π × 150 kHz, measured for hnsi= 0.2.
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average visibility of 0.9(1) at Δ=−8 MHz that is consistent with
expected visibility reduction and appears to be independent of Δ.
The lifetime of the cavity photon, 1=κ, decreases in the presence

of the atomic excitation (stored signal photon) that can scatter light
out of the cavity. To confirm this aspect of our model, we excite the
cavity with a short pulse (200 ns) and measure the cavity decay time
conditioned on detecting a stored signal photon. In Fig. 3C, we plot
the conditional cavity linewidth κ as a function of the control-atom
detuning Δ. A single atom in state jdi increases the cavity linewidth
by κ=κ0 = 1+ ηIm½χ� (25), which is plotted as the theoretical curve in
Fig. 3A. The observed increase of the cavity linewidth agrees with
the theory. Remarkably, the cavity lifetime is shortened even in
those instances when the signal photon is detected, that is, the
scattering of the cavity photon into free space did not actually occur.
The mere presence of the additional decay path shortens the cavity
lifetime, akin to the situation of a two-sided optical cavity whose
linewidth depends on both mirrors even for those photons that are
measured to exit on one particular side.
In this short-pulse excitation (τp � κ−1) limit, we can directly

measure the change in the imprinted phase shift with control
photon dwell time. The imprinted phase shift on the signal light
should be proportional to the time the control photon spends in
the cavity, exerting a light shift on the spin wave. Therefore, we
can increase the phase shift by postselecting on control photons
that exit the cavity later than average. In Fig. 4, we plot the
resulting phase shift as a function of the conditioning time for
control-atom detunings Δ=2π =±8 MHz. The observed condi-
tional phase shift increases for long control photon dwell times.
The largest phase shift we observe is 1.0(4) rad, 2.5 times larger
than the phase shift observed with a continuous control field
and τp > κ−1.

Our current implementation has a limited maximal phase
shift, noise from timing uncertainty on the phase shift, and low
signal transmission. Using a single-sided cavity with η= 10 would
enable us to reach phase shifts of π on atomic resonance, as was
recently measured between a photon and an atom (14), with
signal photon survival probability exceeding 85%. Alternatively,
increasing the cavity cooperativity in the present geometry to
η= 100, compatible with current state of the art (29), enables
phase shifts approaching π close to resonance: by storing a signal
photon in the fσ+, σ−g logical basis in an ensemble prepared in a
2-G magnetic field with secondary ground states jdi= �

�S1=2, 4,4i
and jd′i= �

�S1=2, 4,2i and using matched detunings Δ=±0.7MHz,
each state near maximizes its phase shift of π=2 resulting in a
phase change of 0.87π. This scheme also would allow us to use a
polarization, instead of the single-rail, logical basis to describe
the signal photon’s logical state.
Two separate effects reduce the signal transmission. First,

control light can be scattered by atoms into free space. At large
detuning, scattering is inversely proportional to the detuning Δ. By
working with a larger-cooperativity system, we can choose to work
at a greater light-atom detuning to simultaneously achieve high
phase shift and high transmission. With a cooperativity η= 100, we
expect a phase shift of π with 98% signal transmission in a single-
sided setup on atomic resonance (Δ= 0), and a phase shift of
0.33π with 90% transmission atΔ= 2π × 80MHz in a double-sided
setup. Spatially inhomogeneous cavity coupling further reduces
transmission, which can be eliminated by trapping the atoms in an
intracavity dipole trap at twice the control wavelength (30).
The phase noise resulting from timing randomization can be

circumvented by storing the signal photon longer and applying a
long control pulse (i.e., one much narrower than the cavity
bandwidth) that enters and exits the system during the storage
time. Our maximum storage time is governed by the decoherence
rate γ0, which is dominated by effective magnetic field variations
from the spatially varying polarization in our tightly focused di-
pole trap, and Doppler decoherence from atomic motion.
In conclusion, we have measured a conditional phase shift of

0.4(1) rad imparted onto a weak coherent state by a single photon
using quasi-monochromatic light, and up to 1.0(4) rad by using a
short control pulse and postselecting on photons that remain in the
system for longer than average. The underlying interaction entan-
gles the outgoing signal and cavity modes as verified by a positive
concurrence, and can be extended to π-phase shift with high signal
transmission with today’s technology. Such large and efficient
conditional phase modulation at the single-photon level would
enable deterministic optical quantum logic (31), the engineering
of cluster states (32, 33), and entanglement concentration (34).
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SI Materials and Methods
The Cs atoms in our experiment are held in a far off-resonant dipole trap that is focused at the cavity waist. This trap is formed by
32 mW of 937-nm light focused through an in-vacuum lens to give an expected transverse waist of 2.5 μm at the atoms. The
corresponding calculated trap frequencies are ωradial=2π = 46 kHz and ωaxial=2π= 4 kHz. From absorption images of the atomic
cloud, we measure the atoms to have a transverse rms radius of 2(1) μm and an axial rms radius of 17(1) μm.
The atom-cavity coupling g, and thus the cooperativity η= 4g2=κΓ, varies along the standing wave of the cavity axis and with the

radial extent of the cavity mode. The extent of the atomic cloud and its placement determine the effective cooperativity we realize
in the experiment. The maximal cooperativity η0 = ð24F=πÞ=ðk2w2

cÞ= 8.6ð1Þ is determined by the wavevector k= 2π=λ, where
λ= 852.347 nm, the cavity waist wc = 35.5ð2Þ μm, and the cavity finesse F = 77.1ð5Þ× 103. The maximal value is realized on the cavity
axis at an antinode of the cavity standing wave. The effective cooperativity is the value averaged over all possible atomic positions:

η= η0

ZZZ

ρðx, y, zÞcos2ðkzÞe−
x2+y2

2w2c dx  dy  dz, [S1]

where ρðx, y, zÞ is the normalized atomic density. From the above atomic distribution, we predict an effective cooperativity η= 3.8ð1Þ.
This number is used to plot the expected theory curves in all of the figures in the main text.

Phase Reconstruction. We record 410 storage-and-retrieval attempts with phase measurement every experimental cycle, and typically
combine data from 600 experimental cycles (about 5 min of data). In these, we collect about 150 coincidences, which we use to re-
construct the phase. The photon arrival times (modulo the signal-reference beat note period) are then binned and fit with a sine wave to
extract the phase.
An additional detail in our implementation is that we did not actively stabilize the path length difference between the signal and

reference light, which are produced by two separate acoustooptic modulators (AOMs) whose input light comes from a single laser. The
AOMs are modulated with different frequencies so that the output beams have a frequency difference of 30 MHz. We recalibrate the
phase difference between the two paths each 0.5-s experimental cycle to account for thermal and mechanical drifts. This phase
difference is removed from data taken in that cycle so that all data are effectively compared with the same time origin.
We additionally reconstruct the phase for the data without cavity light measured in 410 additional storage-and-retrieval attempts in

each experimental cycle in the same way, and measure the signal transmission without the reference in a third set. These sets are
interleaved in the data.

Input Control Photon Number. To calculate the input control photon number hnci, we measure the mean photon number transmitted
through the cavity and divide it by the detection efficiency (0.45), fiber collection efficiency (0.7), cavity outcoupling efficiency
(0.66), and atom-induced cavity transmission (25):

Tc =
1

ð1+ hnsiηIm½χ�Þ2 +
�
2δc
κ + hnsiηRe½χ�

�2, [S2]

taking into account the mean stored signal photon number hnsi< 1. [χ = ðð2Δ=ΓÞ+ iÞ=ð1+ ð2Δ=ΓÞ2Þ, as defined in the main text.] The
calculated hnci is equivalent to the mean input control photon number at the input of a fully impedance-matched cavity during the 2-μs
storage time.

Stored Signal Photon Number. The stored signal photon number hnsi is similarly derived from the mean detected signal photon number,
corrected for the detection efficiency (0.45), fiber collection efficiency (0.7), and filter etalon transmission (0.8). The measured signal
phase is independent of the stored signal photon number, as shown in Fig. S1.

Conditional Phase Shift from a Coherent State
The equally weighted total conditional signal phase shift is given by the following:

ϕðtÞ=Arg
�
X

m

PðmjnÞemϕ

�

, [S3]

where ϕ is the phase shift of a single cavity photon induced on the signal light and PðmjnÞ is probability of having m photons
conditioning on detecting n photons given by the following (20):

PðmjncÞ=
�
m+ nbg

n

�

endð1− edÞnbg+m−nPðmÞ, [S4]

where the background counts nbg =Rbt with detected background rate Rb and conditioning time window t, ed is the detection
efficiency of the conditioning path, and PðmÞ is the probability for m photons to be observed in a given coherent state.
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Conditional Cross-Phase Modulation
To calculate the conditional phase shift, we diagonalize the system Hamiltonian approximately given by the following:

Ĥ
Z
=ωaŜ+ωcĉ†ĉ+Ωĉ†ĉŜ+

Z

dω  ω
�

b̂†ωb̂ω + d̂†ωd̂ω
�

+ i
ffiffiffiffiffi
κ0
4π

r Z

dω
nh

b̂†ωĉ− ĉ†b̂ω
i

+
h

d̂†ωĉ− ĉ†d̂ω
io

, [S5]

where ωa and ωc are frequencies of the atomic spin (Ŝ= jdihdj− jgihgj) and intracavity optical field (ĉ), respectively. By adiabatically
eliminating the excited state, we define the effective atom-light coupling strength, Ω= g2Δ=ðΔ2 + ðΓ=2Þ2Þ, with one-photon detuning
Δ, single-photon Rabi frequency 2g, and excited-state decay rate of Γ. The last two terms of the Hamiltonian account for energy and
multimode coupling of input (or reflected) and transmitted light represented by modes b̂ω and d̂ω, respectively. To diagonalize the
Hamiltonian, we follow ref. 35 and define the following operators:

âω =
1

	
ω−ωc −ΩŜ


2
+ ðκ0=2Þ2

�

i
ffiffiffiffiffi
κ0
2π

r

ĉ† +
κ0

2
ffiffiffiffiffi

2π
p ĉ†

Z

d̂ω′
b̂
†

ω + d̂†ω
ω−ω′

+
1
ffiffiffi

2
p 	

ω−ωc −ΩŜ

�

b̂†ω + d̂†ω
��

, [S6]

b�aω =
1
ffiffiffi

2
p
�

−b̂
†

ω + d̂
†

ω

�

, [S7]

to rewrite the Hamiltonian as follows:

Ĥ
Z

=ωaŜ+
Z

dω  ω
�

â†ωâω +b�a
†

ω
b�aω
�

. [S8]

Note that these operators have the following commutation relation:

�
âω, â†ω′

�
= δðω−ω′Þ, [S9]

h

b�aω,b�a
†

ω′

i

= δðω−ω′Þ, [S10]

h

âω,b�a
†

ω′

i

= 0. [S11]

For transmitted cavity light, the final state of the system after an interaction time of t:

jΨi= e−iðmΦ+ωatŜÞjΨai⊗ 1
ffiffiffiffiffiffi

m!
p

� Z

dωBðωÞd̂†ω
�m

j0i, [S12]

where jΨai and j0i are field eigenstates, BðωÞ is the pulse amplitude spectrum, and m is the photon number. The phase
Φ= arctanðð2δc=κÞ+ϕÞ and

ϕ=
η

2
Re½χ� κ0

κ
, [S13]

κ= κ0ð1+ ηIm½χ�Þ, [S14]

χ =
�
2Δ
Γ

+ i
�, 

1+
�
2Δ
Γ

�2
!

. [S15]

Here, κ0 = 2π × 150 kHz is the measured empty-cavity linewidth, 2g= 2π × 1.6 MHz is the single-photon Rabi frequency, and
Γ= 2π × 5.2 MHz is the excited-state decay rate. Using Eq. S13, the conditional phase shift between a single cavity photon and one
stored atomic excitation can then be written as follows:

Φ= arctan
�
2δc
κ

+
η

2
Re½χ�

1+ ηIm½χ�
�

− arctan
�
2δc
κ0

�

, [S16]

where δc =ω−ωc is detuning of light from empty cavity resonance. In the limit of small detuning δc=κ � 1, the conditional phase shift
is approximately given by the following:

Φ ’ ϕ=
η

2
Re½χ�

1+ ηIm½χ�. [S17]
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Conditional Control Phase Shift
In themain text, we focus on the phase shift measurement of the stored atomic excitation due to its interaction with a control photon. The
control light also undergoes a phase shift. This phase shift is the result of shift in cavity resonance frequency imposed by atoms in the
cavity mode. To measure the phase shift on the control light, we linearly polarize the input control light and measure its conditional
polarization rotation.
The effective cooperativity of the σ−-polarized light is reduced by a factor of 45 compared with σ+-polarized light and detuned by

8 MHz from jF = 4,mf = 4i→ jF′= 5,mf = 3i transition when σ+ light is resonant with jF = 4,mf = 4i→ jF′= 5,mf = 5i transition. The
interaction of linearly polarized light then predominantly the interaction of the σ+ polarization component. Therefore, we can measure the
phase shift on σ+ light as a polarization rotation on the outgoing control light. This polarization rotation is measured using two photon
counters placed at the two ports of a polarizing beam splitter (PBS) after the cavity. By rotating the polarization before the PBS by 45° and
subtracting the two photon-count rates, d1 and d2, a signal proportional to sinðψÞ is obtained as ðd1 − d2Þ=ðd1 + d2Þ= ð2 ffiffiffiffi

B
p

=ð1+BÞÞsinðψÞ.
Here, B is the blocking factor that accounts for different transmission of σ+ and σ− components of light. In presence of a stored signal
photon, the transmission on cavity resonance for σ+-polarized light is reduced by this factor B ’ ð1+ ηIm½χ�Þ2 + ðηRe½χ�Þ2 compared with the
σ− transmission. We separately measure B (Fig. S2, Inset) by detecting the cavity transmission for each circular polarization con-
ditioned on retrieving a signal photon. This measured blocking factor allows us to extract the cavity phase shift (Fig. S2). We at-
tribute the asymmetry in the shape of the phase shift as a function of detuning plotted in Fig. 2B to nonzero detuning of light from
the cavity. The solid line is the theoretical expectation (Eq. S16) assuming a light-cavity detuning δc = 0 kHz. As the sign of the
frequency shift in the cavity resonance conditioned on detecting one recovered signal photon changes with the sign of light-atom
detuning Δ, having a nonzero δc results in total shift of the cavity resonance that is different in magnitude for positive and negative
detuning Δ. This causes an asymmetry in the phase shift as a function of Δ (Fig. 2B). This change with light-atom detuning can be
understood as a different interaction time: the lifetime of cavity photons effectively reduces with detuning of light from the cavity
resonance.

Reconstruction of Density Matrix
Based on the density matrix reconstruction provided by James et al. (36) for polarization-entangled photons, we developed a method to
reconstruct the full density matrix of a number-polarization entangled state jΨi by measuring coincidences in the j0si and j1si signal
photon basis and the j0ci and j1ci control polarization basis, where we use the 0 and 1 number representation for zero and one signal
photon, and 0c and 1c to indicate different circularly polarized control photons, that is, 0c ↔ σ− and 1c ↔ σ+. Coherently interfering the
signal state with a phase reference allows us to measure the signal state in an arbitrary superposition j0si+ eiθs j1si. To project the
control light into the desired state, j0ci+ eiθc j1ci, we use a half-wave plate (HWP) and quarter-wave plate (QWP) after the cavity
followed by a PBS. The phases θs and θc can be chosen for each measurement by changing phase of the signal reference light and
polarization of the control light after the cavity, respectively. However, the auxiliary optical phase reference adds a complication: as this
reference light is not part of the signal photon state and adds photons to the detected field, we need to normalize out its contribution to the
measured coincidences to ensure the reconstructed density matrix is independent of the reference light intensity.

Coincidence Measurements. In total, 16 coincidence measurements are required to reconstruct the complete density matrix. To arrive at
the derived coincidences for the output number-polarization state, we measure the raw coincidences, normalize, and then reconstruct
coincidences for jΨi.
Measure raw coincidences. The tomographic states equivalent to ref. 36 for coincidences nνðν= 1,2, ..16Þ are listed for signal and control
modes in Table S1.
In our experiment, these tomographic states are obtained through interference measurements of the signal with an optical phase

reference and polarization measurement of the control light. For the signal path, the phase reference light is a frequency-shifted beam
copropagating with the signal. This light mixes on the detector to form a beat note with a period of about 33 ns. All relative phase angles θs are
measured in a single dataset. For the control path, we linearly polarize the input cavity light so that the phase between control light (the
σ+-polarized component) and its reference (σ−-polarized component) appears as a polarization rotation at the cavity output. We use a HWP,
QWP, and a polarizing beam splitter to analyze the output at different projection angles θc.
We measure the raw coincidences nνðν= 1,2, ..16Þ on a pair of single-photon counters. Measuring in four configurations, we measure

all 16 tomographic states as follows:

• Coincidences for ν= 1− 4 are measured without signal phase reference, whereas control light is measured in σ+ or σ− polarization.
The coincidences are then extracted from these measurements. For example, n3 is the number of times that a signal photon (without
reference) and a σ+-polarized control photon are simultaneously detected, and n1 is number of coincidences where no signal photon
(without reference) and a σ−-polarized control photon are detected.

• Coincidences for ν= 5− 8 are measured with a phase reference light in the signal mode. To reconstruct interference fringes, signal
photons are conditioned on the detection of a σ− or σ+ control photon. The resulting coincidence counts form a beat note. The
coincidence counts nν are then the number of coincidences at the phase θs, which we extract from a fit to the counts at all phases.
Detector counts on the signal path at θs = 0  ð3π=2Þ corresponds to projecting the jΨi to j0si+ j1si (j0si− ij1si). To be concrete, n6 is
the number of coincidences with a σ+ photons detected on the control at θs = 3π=2 and corresponds to a tomographic mea-
surement onto signal state j0si− ij1si and control state j1ci.

• Coincidences for ν= 12− 15 are measured with no signal reference, whereas the control light is projected into different superposition
state of σ− and σ+-polarized light. The HWP and QWP placed after the cavity and before a PBS followed by a single-photon
detector, set the measurement basis and thus the relative phase angle θc. The coincidence count n14, for example, is the number of times
one photon is detected in the signal path and one photon is detected on the control path with the analysis HWP at π=8, which
corresponds to a relative phase θc = π=2 between σ− and σ+-polarized light. This is a tomographic measurement onto the signal state
j1si and control state j0ci+ ij1ci.

• Coincidences for ν= 9− 11 and ν= 16 are measured with signal phase reference, whereas control light is projected into different
superposition state of σ− and σ+-polarized light. These elements are determined as for ν= 5− 8: detected signal photons are
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conditioned on detecting one control photon (now at a relative phase angle θc), and the coincidence counts nν are the number of
coincidences at phase θs.

Normalizing coincidences. The coincidences for ν= 5,6, . . . , 16 are measured using signal phase reference that needs to be normalized out. To do
this, we calculate the interference parameter I ν which takes on values between −1 and 1. On the signal path, the interference parameter is just
ϑ cos θ, that is, the value of a zero-centered interference fringe with contrast ϑ and a phase difference of θ.
To obtain I ν, we make two additional measurements. We measure the signal and signal phase reference beat note with input light on the

signal path only (no control light), as well as the linearly polarized control without signal light at different HWP angles to reconstruct a
complete fringe. This measures the contrast in the absence of interactions. We then calculate I as follows:

1. We subtract the averaged value of the raw coincidences (coincidence number averaged over all signal phases or angles of the HWP
in the control path) from nν (ν= 5, . . . , 16).

2. We divide the coincidence number by the total number of detected counts in the conditioning port.
3. We finally divide through by the fringe amplitude measured in our additional measurements without interaction to correct for

nonunity contrast without interactions, for example, due to power imbalance between the signal and phase reference.

Reconstruct coincidences. The values of I ν together with nνðν= 1,2,3,4Þ are used to reconstruct the coincidence numbers for jΨi alone for
all 16 tomographic measurements. We first rescale coincidences nνðν= 1,2,3,4Þ to correct for detection losses, ed. The efficiency ed ’ 0.2
for both signal and control modes. Projecting the general output state jΨi= p00j0s0ci+ p01eiϕ01 j0s1ci+ p10eiϕ10 j1s0ci+ p11eiϕ11 j1s1ci (with
probability amplitudes pij and phase shift ϕij) to the relevant tomographic state for each ν= 5, . . . , 16 allows us to evaluate coincidences in
terms of I and nνðν= 1,2,3,4Þ. For example, to reconstruct n5, we project jΨi onto ðj0si+ eiθs j1siÞj0ci. The expectation value for this
parameter is then as follows:

hn5i= jhψ jΨij2 = p200 + p210 + 2p00 p10I5, [S18]

where I5 is the corresponding interference parameter which accounts for the visibility ϑ, the relative phase angle θs=3π/2 and ϕ10.
Repeating this for each nνðν= 5, . . . , 16Þ, and expressing total coincidences in terms of I and nνðν= 1,2,3,4Þ, we find the following:

n5 =
n1 + n4

2
+

ffiffiffiffiffiffiffiffiffiffi
n1n4

p I5, [S19]

n6 =
n2 + n3

2
+

ffiffiffiffiffiffiffiffiffiffi
n2n3

p I6, [S20]

n6 =
n2 + n3

2
+

ffiffiffiffiffiffiffiffiffiffi
n2n3

p I7, [S21]

n8 =
n1 + n4

2
+

ffiffiffiffiffiffiffiffiffiffi
n1n4

p I8, [S22]

n9 =
n1 + n2 + n3 + n4

4
+

1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð ffiffiffiffiffiffiffiffiffiffi
n1n4

p
+

ffiffiffiffiffiffiffiffiffiffi
n2n3

p Þ2 + ð ffiffiffiffiffiffiffiffiffiffi
n2n4

p
−

ffiffiffiffiffiffiffiffiffiffi
n1n3

p Þ2
q

I9,
[S23]

n10 =
n1 + n2 + n3 + n4 + 2

ffiffiffiffiffiffiffiffiffiffi
n1n2

p
+ 2

ffiffiffiffiffiffiffiffiffiffi
n3n4

p
4

+
1
2
ð ffiffiffiffiffi

n1
p

+
ffiffiffiffiffi
n2

p Þð ffiffiffiffiffi
n3

p
+

ffiffiffiffiffi
n4

p ÞI10, [S24]

n11 =
n1 + n2 + n3 + n4 + 2

ffiffiffiffiffiffiffiffiffiffi
n1n2

p
+ 2

ffiffiffiffiffiffiffiffiffiffi
n3n4

p
4

+
1
2
ð ffiffiffiffiffi

n1
p

+
ffiffiffiffiffi
n2

p Þð ffiffiffiffiffi
n3

p
+

ffiffiffiffiffi
n4

p ÞI11, [S25]

n12 =
n1 + n2

2
+

ffiffiffiffiffiffiffiffiffiffi
n1n2

p I12, [S26]

n13 =
n3 + n4

2
+

ffiffiffiffiffiffiffiffiffiffi
n3n4

p I13, [S27]

n14 =
n3 + n4

2
+

ffiffiffiffiffiffiffiffiffiffi
n3n4

p I14, [S28]

n15 =
n1 + n2

2
+

ffiffiffiffiffiffiffiffiffiffi
n1n2

p I15, [S29]
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n16 =
n1 + n2 + n3 + n4

4
+
1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð ffiffiffiffiffiffiffiffiffiffi
n1n4

p
+

ffiffiffiffiffiffiffiffiffiffi
n2n3

p Þ2 + ð ffiffiffiffiffiffiffiffiffiffi
n2n4

p
−

ffiffiffiffiffiffiffiffiffiffi
n1n3

p Þ2
q

I16. [S30]

Experimental Density Matrix. The final coincidences can then be used to reconstruct the experimental density matrix following ref. 36:

ρ̂ex =
P16

ν=1Mνnν
P4

ν=1nν
, [S31]

where matrices Mν in these bases are provided below. By doing so, we arrive at the following measured experimental density matrix:

ρ̂ex =

0

B
B
@

0.6358 0.4319− 0.07635i 0.1337− 0.00026i 0.00154− 0.0222i
0.4319+ 0.07635i 0.3205 0.1292− 0.07199i 0.0593− 0.01282i
0.1337+ 0.00026i 0.1292+ 0.07199i 0.02899 0.0184− 0.0084i
0.00154+ 0.0222i 0.0593+ 0.01282i 0.0184+ 0.0084i 0.0146

1

C
C
A
.

Reconstruction of the Physical Density Matrix. To reconstruct the physical density matrix that most probably describes the
measurement results, we use the maximum-likelihood (Maxlik) method as outlined in ref. 36. This requires finding minimum of
the following function:

Lðt1, t2, . . . , t16Þ=
X16

ν=1

�

N
D

ψνjρ̂pðt1, t2, . . . , t16Þjψν

E

− nν
�2

2N σ2ν
, [S32]

where

ρ̂pðtÞ=
T̂†T̂

Tr
�
T̂†T̂

� , [S33]

T̂ =

0

B
B
@

t1 0 0 0
t5 + it6 t2 0 0
t11 + it12 t7 + it8 t3 0
t15 + it16 t13 + it14 t9 + it10 t4

1

C
C
A
, [S34]

N =
X4

n=1

nν, [S35]

and σν is the SD for the νth coincidence measurement given approximately by
ffiffiffiffiffi
nν

p
(Poisson noise). The initial estimation of t1, . . . t16 is

obtained using the inverse relationship by which elements of T̂ can be expressed in terms of elements of ρ̂exp (36). After the Maxlik
reconstruction of the density matrix and subtracting the global phases, we obtain the following matrix:

ρ̂p =

0

B
B
@

0.6315 0.4174 0.1375 0.0495− 0.0239i
0.4174 0.321224 0.0996− 0.0035i 0.0527− 0.0248i
0.1375 0.0996+ 0.0035i 0.0319 0.0153− 0.0054i

0.0495+ 0.0239i 0.0527+ 0.0248i 0.0153+ 0.0054i 0.0154

1

C
C
A
,

where we calculate Tr½ρ2�= 0.92 as a measure of purity. The concurrence is evaluated as CðρÞ=maxð0, λ1 − λ2 − λ3 − λ4Þ, where λi
values are the square roots of the eigenvalues of ρρ′ in descending order, ρ′= ðσy ⊗ σyÞρpðσy ⊗ σyÞ, and σy is Pauli y matrix.
We obtain a concurrence of C= 0.082± 0.005 (statistical) ±0.016 (systematic) and nonlinear phase shift measured as
ϕnl =Argðρp½1,4�Þ= 0.45ð2Þ that agrees with the measured conditional phase shift. To estimate the statistical error in determining
concurrence and phase, we randomly sample one-half of the data 100 times and reconstruct the density matrix each time and find
the SD of the concurrence and phase calculations. Table S2 summarizes the various systematic uncertainties that go into our
estimate of the concurrence.
Note that the maximum concurrence at this phase shift using the same coherent states as in our experiment is 0.11.

In the case where input states are equal superposition of j0si and j1si, a concurrence on the order of jsinðϕ=2Þj is ideally
achievable (37).
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The Mν Matrices. The Mν matrices defined below are from ref. 36 with corrected typos in M2 and M14:

M1 =
1
2

0

B
B
@

2 −ð1− iÞ −ð1+ iÞ 1
−ð1+ iÞ 0 i 0
−ð1− iÞ −i 0 0

1 0 0 0

1

C
C
A
,

M2 =
1
2

0

B
B
@

0 −ð1− iÞ 0 1
−ð1+ iÞ 2 i −ð1+ iÞ

0 −i 0 0
1 −ð1− iÞ 0 0

1

C
C
A
,

M3 =
1
2

0

B
B
@

0 0 0 1
0 0 i −ð1+ iÞ
0 −i 0 −ð1− iÞ
1 −ð1− iÞ −ð1+ iÞ 2

1

C
C
A
,

M4 =
1
2

0

B
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@

0 0 −ð1+ iÞ 1
0 0 i 0

−ð1− iÞ −i 2 −ð1− iÞ
1 0 −ð1+ iÞ 0

1

C
C
A
,

M5 =
1
2

0

B
B
@

0 0 2i −ð1+ iÞ
0 0 ð1− iÞ 0
−2i ð1+ iÞ 0 0

−ð1− iÞ 0 0 0

1

C
C
A
,

M6 =
1
2

0

B
B
@

0 0 0 −ð1+ iÞ
0 0 ð1− iÞ 2i
0 ð1+ iÞ 0 0

−ð1− iÞ −2i 0 0

1

C
C
A
,

M7 =
1
2

0

B
B
@

0 0 0 −ð1+ iÞ
0 0 −ð1− iÞ 2
0 −ð1+ iÞ 0 0

−ð1− iÞ 2 0 0

1

C
C
A
,

M8 =
1
2

0

B
B
@

0 0 2 −ð1+ iÞ
0 0 −ð1− iÞ 0
2 −ð1+ iÞ 0 0

−ð1− iÞ 0 0 0

1

C
C
A
,

M9 =

0

B
B
@

0 0 0 i
0 0 −i 0
0 i 0 0
−i 0 0 0

1

C
C
A
,

M10 =

0

B
B
@

0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

1

C
C
A
,
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0
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0 0 0 i
0 0 i 0
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1

C
C
A
,
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M12 =
1
2

0

B
B
@

0 2 0 −ð1+ iÞ
2 0 −ð1+ iÞ 0
0 −ð1− iÞ 0 0

−ð1− iÞ 0 0 0

1

C
C
A
,

M13 =
1
2

0

B
B
@

0 0 0 −ð1+ iÞ
0 0 −ð1+ iÞ 0
0 −ð1− iÞ 0 2

−ð1− iÞ 0 2 0

1

C
C
A
,

M14 =
1
2

0

B
B
@

0 0 0 −ð1− iÞ
0 0 ð1− iÞ 0
0 ð1+ iÞ 0 −2i

−ð1+ iÞ 0 2i 0

1

C
C
A
,

M15 =
1
2

0

B
B
@

0 −2i 0 −ð1− iÞ
2i 0 ð1− iÞ 0
0 ð1+ iÞ 0 0

−ð1+ iÞ 0 0 0

1

C
C
A
,

M16 =

0

B
B
@

0 0 0 1
0 0 −1 0
0 −1 0 0
1 0 0 0

1

C
C
A
. [S36]

Fig. S1. Conditional phase shift of the signal light as a function of mean stored signal photon number. The phase shift is independent of the stored signal
photon number.
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Fig. S2. Cavity transmission for right-circularly polarized light conditioned on detecting one retrieved signal photons is plotted as a function of light-atom
detuning. The solid line represents the theoretical expectation. Inset shows the blocking factor, B, of the linearly polarized control light plotted conditioned on
detecting a signal photon. The solid line represents the theoretical expectation. The deviation of the data from the theory in the Inset can be explained by the
interaction of σ−-polarized light with excited states other than jF′=5,mf = 3i not taken into consideration in the model.

Table S1. The 16 measurements needed to reconstruct the
density matrix in the photon-number basis of signal mode and
polarization basis of the control mode

ν Signal Control θs θh θq

1 j0si j0ci NA 0 π=4
2 j0si j1ci NA 0 −π=4
3 j1si j1ci NA 0 −π=4
4 j1si j0ci NA 0 π=4
5 j0si− ij1si j0ci 3π=2 0 π=4
6 j0si− ij1si j1ci 3π=2 0 −π=4
7 j0si+ j1si j1ci 0 0 −π=4
8 j0si+ j1si j0ci 0 0 π=4
9 j0si+ j1si j0ci− ij1ci 0 −π=8 0
10 j0si+ j1si j0ci+ j1ci 0 0 0
11 j0si− ij1si j0ci+ j1ci 3π=2 0 0
12 j0si j0ci+ j1ci NA 0 0
13 j1si j0ci+ j1ci NA 0 0
14 j1si j0ci+ ij1ci NA π=8 0
15 j0si j0ci+ ij1ci NA π=8 0
16 j0si− ij1si j0ci+ ij1ci 3π=2 π=8 0

The measurement phase angle is listed as NA when there is no phase
reference on the signal path. θh and θq represent angles of the HWP and
QWP placed after the cavity.

Table S2. Main sources of uncertainty in reconstructing the density matrix of the two-photon state, indicating the
resulting maximum systematic error in the concurrence estimate

Variable Source
Maximum relative
uncertainty, %

Maximum concurrence
uncertainty

Quantum efficiency Fiber coupling, detector efficiency,
frequency filter transmission

15 0.01

Control polarization Atom number fluctuation, atom loss 4 0.007
Signal reference phase

estimation
Reference fast phase fluctuation,

shot noise
5 0.009

Signal power fluctuation Fiber optics, shot noise 4 0.002
Signal fringe normalization Power fluctuation, shot noise 5 0.005
Total error All of the above 0.016

The total systematic error should be compared with the statistical error of 0.005.
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