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I. TYPES OF RYDBERG INTERACTIONS

The interaction between two atoms in distinct levels Rydberg levels R and R′ has the general form

V =

(
Vb(r) Vex(r)
Vex(r) Vb(r)

)
(1)

in the two-atom product basis {|RR′〉 , |R′R〉}. Here, r is the distance between the atoms.
For levels R,R′ with ΔL = ±1, the dominant interaction will be the direct dipolar interaction Vex(r) = C3/r

3

[1]. Because this interaction is not diagonal in the product basis, its action is to exchange the states |RR′〉 and
|R′R〉. This case describes the interaction between the

∣∣100S1/2,mJ = 1/2
〉
and

∣∣99P3/2,mJ = 3/2
〉
states used for

the experiments in the main text, which feature C3/h = 33.4 GHz μm3. For these states, Vb is negligible at the
relevant length scales (less than 5% of Vex at r = 20μm), as shown in Fig. S1.
In contrast, for same-parity levels, the direct dipolar interaction is not allowed, so the dominant interaction is second-

order, such that Vb(r) = C6/r
6 and Vex(r) = χ6/r

6. For states with widely separated principal quantum numbers,
|C6| � |χ6|. However, if the principal quantum numbers of the R,R′ states are similar, |χ6| can be comparable to |C6|.
When |C6| � |χ6|, the interaction does not lead to exchange of Rydberg excitations, but only shifts the combined
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FIG. S1: Comparison of eigenenergies of a
∣
∣100S1/2,mJ = 1/2

〉
-
∣
∣99P3/2,mJ = 3/2

〉
atom pair using numerical diagonalization

of the dipolar Hamiltonian in a basis of 2750 pairs of Rydberg levels, and a C3/r
3 approximation (dashed lines). The positive

and negative eigenenergies, E+ and E− (corresponding to the gerade and ungerade molecular states), are plotted as a function
of the distance between the atoms r, relative to their average energy when r → ∞. The C3 approximation is accurate to better
than 5% at distances greater than 20 μm, which is where the exchange interaction takes place at the highest densities used in
the experiment.

energy, as is typically assumed for Rydberg blockade (and must be true when R = R′). In contrast, when |χ6| ≈ |C6|
state exchange is also possible.

For the experiments described in the inset to Fig. 3, the state
∣∣97S1/2

〉
has C6/h = −114 THz μm6 and χ6/h = −0.6

THz μm6, while
∣∣99S1/2

〉
has C6/h = 65.3 THz μm6 and χ6/h = 48.7 THz μm6. These values are obtained from direct

diagonalization of the dipole-dipole Hamiltonian for a truncated basis of states [1]. All potentials are evaluated for
interatomic separation along the quantization axis, which is appropriate for the quasi-1D geometry of the experiment.

II. ANALYTICAL RESULTS

In this section, we provide the theory of photon exchange process. We will focus on the derivation of the effective
Schrödinger equation provided in the main text and its analytical solution. We shall see that such model is asymptot-
ically valid in the limit of large atomic density. A more rigorous theoretical treatment of the problem, including the
effects of inhomogeneous density of the atomic cloud and the finite lifetime of Rydberg states, is provided in section
IV.

The dynamics in our system are described by a Hamiltonian Ĥ = ĤEIT+ V̂ex, where ĤEIT and V̂ex characterize the
propagation and the interaction of photons, respectively. In the rotating frame, this Hamiltonian can be efficiently
written in terms of bosonic field operators Ê†(z), P̂†(z), Ŝ†(z), and Ĉ†(z) for a signal photon, an atomic excitation in
the 5P3/2 state, an excitation in the nS state, and an excitation in the n′P state (the gate photon) [2]:

ĤEIT =

∫
dz
(
Ê†(z), P̂†(z), Ŝ†(z)

)⎛⎝ −ic∂z ḡ 0
ḡ −iγ Ω
0 Ω 0

⎞
⎠
⎛
⎝ Ê(z)

P̂(z)

Ŝ(z)

⎞
⎠ (2)

and

V̂ex =

∫
dxdyV (x− y)Ĉ†(y)Ŝ†(x)Ŝ(y)Ĉ(x), (3)
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where c is the speed of light, ḡ is the collectively enhanced coupling of a signal photon to the ensemble of atoms, Ω is
the Rabi frequency of the control field laser, γ is the decay rate of the 5P3/2 state, and V (r) = Cα/r

α is the strength

of the long-range interaction. V̂ex can arise from a dipolar (α = 3) or van der Waals interaction (α = 6), but we
concentrate on the α = 3 case here. We use units such that � = 1. Note that the relationship to the experimental
units in the main text is Ω = Ωc/2 and γ = Γ/2, where Γ/(2π) = 6.1 MHz for Rb. The EIT linewidth used in the
main text is defined as γEIT = Ω2

c/Γ.
Owing to EIT, photons propagate as dark state polaritons in the atomic cloud, so we introduce the dark and bright

polariton basis D̂(z) = cos θŜ(z) − sin θÊ(z) and B̂(z) = sin θŜ(z) + cos θÊ(z). Here the mixing angle is given by

sin θ ≡ Ω/
√
ḡ2 +Ω2 [3], and in our system, θ � 1 by several orders of magnitude. The propagation of the dark state

polariton is well described by a Hamiltonian

ĤD = −i

∫
dz vgD̂†(z)∂zD̂(z) (4)

with the slow light group velocity vg = c Ω2/(ḡ2 + Ω2). The reduced group velocity arises from the fact that the
polariton is composed of atomic and photonic components, and a larger atomic component will result in slower light
[3]. Also, in this basis, the interaction becomes

V̂ex =

∫
dxdy cos2 θV (x− y) Ĉ†(y)D̂†(x)D̂(y)Ĉ(x) +O(sin θ), (5)

where we may only keep the leading order term with an approximation cos θ ≈ 1. These approximations are valid
as long as bright state polaritons or 5P3/2 states are not populated, which we will confirm for self-consistency. In
order to describe the photon collision dynamics, we define a two-photon wavefunction ψ(r, r′) as the probability
amplitude of finding a dark state polariton (signal photon) at r and a n′P excitation (gate photon) at r′, namely

ψ(r, r′) = 〈0| D̂(r)Ĉ(r′) |ψ〉. Then, the time evolution of the wavefunction can be obtained from the Schrödinger
equation

∂

∂t
ψ(r, r′) = 〈0| D̂(r)Ĉ(r′) ∂

∂t
|ψ〉 = −i 〈0| D̂(r)Ĉ(r′)(ĤD + V̂ex) |ψ〉 (6)

= −vg
∂

∂r
ψ(r, r′)− iV (r − r′)ψ(r′, r), (7)

where we recover Eq. (1) from the main text. To obtain the second line, we have used the commutation relations of
bosonic field operators, e.g.,

〈0| D̂(r)Ĉ(r′)ĤD |ψ〉 = −i

∫
dz vg 〈0| D̂(r)D̂†(z)∂zD̂(z)Ĉ(r′) |ψ〉 (8)

= −i

∫
dz vg 〈0|

(
D̂†(z)D̂(r) + δ(z − r)

)
∂zD̂(z)Ĉ(r′) |ψ〉 (9)

= −ivg∂r 〈0| D̂(r)Ĉ(r′) |ψ〉 = −ivg∂rψ(r, r
′), (10)

and similarly for 〈0| D̂(r)Ĉ(r′)V̂ex |ψ〉.
Now, we solve the Schrödinger equation in Eq. (7). Note that the exchange interaction is not in the conventional

form since it couples two wavefunction amplitudes at reversed positions r ↔ r′. In order to convert this into a local
interaction, we divide the wavefunction into two components ψ(r, r′) = ψSP (r, r

′) for r < r′ and ψ(r, r′) = ψPS(r
′, r)

for r > r′, where our Schrödinger’s equation becomes

i
∂

∂t

(
ψSP

ψPS

)
=

( −ivg∂r Vex(r − r′)
Vex(r − r′) −ivg∂r′

)(
ψSP

ψPS

)
. (11)

Then, we move into the center of mass frame by introducing R = (r + r′)/2 and z = r′ − r, where the propagation is
described by ∂r 	→ 1

2∂R − ∂z and ∂r′ 	→ 1
2∂R + ∂z. Finally, introducing a new effective time variable ∂τ ≡ ∂t +

vg

2 ∂R
in this frame, we obtain

i
∂

∂τ

(
ψSP

ψPS

)
=

(
ivg∂z Vex(z)
Vex(z) −ivg∂z

)(
ψSP

ψPS

)
= [iσzvg∂z + V (z)σx]

(
ψSP

ψPS

)
, (12)

where σμ are the Pauli operators.
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In the continuous-wave limit (where the R dependence vanishes), we are interested in the properties of the zero-
energy eigenstates of this equation, which describe the interaction between photons with vanishing relative momentum.
By setting the left hand side of Eq. (12) to zero and multiplying by σz, we obtain −ivg∂zΨ = iVex(z)σ

yΨ with
Ψ = (ψSP , ψPS)

T . We integrate from z = ∞ to z = z′ to get

Ψ(z′) = e
− 1

vg

∫ z′
∞ Vex(z)dzσ

y

Ψ(∞) =

(
coshφ(z′) −i sinhφ(z′)
i sinhφ(z′) coshφ(z′)

)
Ψ(∞), (13)

with φ(z′) ≡ 1
vg

∫∞
z′ Vex(z)dz. For a normalizable solution, we require that |Ψ(z′)| < ∞ as z′ → 0. Since φ(z′) diverges

for decreasing z′, such a solution is possible only when Ψ(∞) ∝ (1,−i) for positive Cα and Ψ(∞) ∝ (1, i) for negative
Cα. Therefore, the zero energy eigenstate is given by(

ψSP

ψPS

)
∝
(

e−|φ(z′)|

−sign(Cα)ie
−|φ(z′)|

)
. (14)

For a dipolar interaction, this solution reduces to

ψ(r, r′) = e
− 1

2vg

|C3|
(r−r′)2 e−i sign[(r−r′)C3]π/4. (15)

By defining the hopping length scale rs ≡
√|C3|/vg, we recover the solution following Eq. (1) in the main text. This

can also be expressed in terms of the blockade radius as rs =
√

ODb/2rb, where rb = (|C3|γ/Ω2)1/3 and ODb = rb/la,
with la being the attenuation length for the probe field in the absence of EIT (inversely proportional to the atomic
density).

There are several points worth noting. First, Eq. (15) implies that the particle propagates as a (zero momentum)
plane wave at r → ±∞. The relative phase difference between these two plane waves ψSP (z = ∞)(before the collision)
and ψPS(z = ∞)(after the collision) indicates that the interaction imprints a phase of ±π/2 for positive and negative
Cα, respectively. Second, this wavefunction has vanishingly small amplitude when |r− r′| < rs. Therefore, the bright
state polaritons or 5P3/2 states will not be populated when ODb � 1, consistent with our initial assumptions. Finally,
we note that the imprinted phase ±π/2 is independent of the precise value of experimental parameters such as Ω, ḡ, γ
or Vex(r− r′). The only requirement for the phase being unchanged is that the integrated interaction φ(z) diverges as
z approach to zero. While this is approximately satisfied in the regime of large ODb, more careful analysis is necessary
for small ODb, as we provide later in section IV.

III. SYMMETRY PROTECTION OF THE PHASE

The fact that the phase shift acquired in a collision between two polaritons is robustly π/2, independent of the
precise experimental parameters, can be understood in terms of symmetries of the effective Hamiltonian describing
the scattering process. To derive this, we start with the effective Schrödinger equation from the previous section:

i∂τΨ = [iσzvg∂z + V (z)σx] Ψ ≡ ĤexΨ, (16)

where z is the distance between two particles, Ψ is the two-component wavefunction Ψ = (ψSP , ψPS)
T , and τ is the

effective time in the center-of-mass frame defined by ∂τ = ∂t +(vg/2)∂R. We find that this effective Hamiltonian Ĥex

has three symmetries T̂, P̂, and Ĉ, whose action on the wavefunction is defined by:

T̂ = σx
K̂, P̂ = σz

K̂, Ĉ = −iσy, (17)

where K̂ is complex conjugation. We refer to these symmetries as time-reversal, particle-hole, and chiral symmetries
(respective) in analogy to those of fermionic particles. Note that three operators are related by Ĉ ≡ T̂P̂ as in the
case of free fermions. The symmetry of the exchange process is defined by the commutation and anti-communtation
relations of Ĥex with these operators, where one can easily check that

T̂Ĥex = ĤexT̂, P̂Ĥex = −ĤexP̂, ĈĤex = −ĤexĈ. (18)

These symmetries imply that if Ψ is an eigenstate of Hex with energy E, then T̂Ψ, P̂Ψ, ĈΨ are also eigenstates with
energy E, −E, and −E, respectively. Here, we are most interested in a propagating wave at energy E = 0, where any
linear combination of these states are still an eigenstate with zero energy. Let us assume Ψ0 = (f(z), g(z))T is such an
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eigenstate. As the interaction V (z) diverges at z = 0 and vanishes at z → ∞, we know f(z) and g(z) have to vanish
at z = 0 and converge at large z to a plane wave with zero momentum (i.e., a constant). Without loss of generality,
we set f(∞) = 1 and g(∞) = t, where t is the complex transmission coefficient. From the time-reversal symmetry, it

follows that the wavefunction Ψ1 ≡ t∗Ψ0 − T̂Ψ0 = [t∗f(z)− g∗(z), t∗g(z)− f∗(z)]T is an eigenstate, where the first
component vanishes as z → ∞. Using the conservation of the probability current densities at z = 0 and z = ∞, one
finds that the second component must also vanish, implying that the transmission probability is unity |t|2 = 1. It
follows that, to the extent that the above symmetries are perfectly satisfied, the transmission through the medium in
the presence of the exchange interaction is perfectly lossless.

Similarly, using the particle-hole and chiral symmetries, one can define Ψ2 ≡ Ψ0 + P̂Ψ0 and Ψ3 ≡ tΨ0 − ĈΨ0,
each of which implies t + t∗ = 0 and t2 + 1 = 0, respectively. Thus the combination of the particle-hole and chiral
symmetries ensures that the scattering phase of the collision is ±π/2. Table I summarizes the symmetry properties

Symmetry Properties
Action

(single-component)

Action

(two-component)
Consequence

Time-reversal
anti-unitary

T̂Ĥ = ĤT̂
ψ(r, r′) �→ ψ∗(r′, r) σx

K̂ |t|2 = 1

Particle-hole
anti-unitary

P̂Ĥ = −ĤP̂
ψ(r, r′) �→ sgn(r′ − r)ψ∗(r, r′) σz

K̂ t+ t∗ = 0

Chiral
unitary

ĈĤ = −ĤĈ
ψ(r, r′) �→ −sgn(r′ − r)ψ(r′, r) −iσy t2 = −1

TABLE I: Summary of symmetries and their consequences. The operator K̂ indicates complex-conjugation.

of our collision process and their consequences.
Interestingly, if Vex(z) does not diverge at z = 0, this symmetry argument is broken due to the boundary condition

limz→0 f(z) = limz→0 g(z). If f(0) = g(0) 
= 0 satisfies the boundary condition, ĈΨ or P̂Ψ cannot, breaking the
symmetries. When V (0) diverges, the value of |Ψ(0)| vanishes and the symmetry is restored, providing a robust phase
shift.

IV. APPROXIMATE ANALYTICAL SOLUTION INCLUDING ABSORPTION

Here, we consider a complete model for polariton collisions that allows for the incorporation of loss and finite pulse
bandwidth effects. We first use this model to derive approximate analytical expressions for the loss and phase shift for
continuous-wave fields in the limits of small and large ODb, and then consider the impact of finite pulse bandwidth.

From Eqs. (2) and (3) we can derive the following Heisenberg equations for the slowly-varying bosonic operators

{Ê , P̂, Ŝ, Ĉ}:

(∂t + c∂z)Ê(z, t) = −iḡP̂(z, t) (19)

∂tP̂(z, t) = −iḡÊ(z, t)− iΩŜ(z, t)− γP̂ (z, t) (20)

∂tŜ(z, t) = −iΩP̂(z, t)− i

∫
dz′V (z − z′)Ĉ†(z′, t)Ĉ(z, t)Ŝ(z′, t) (21)

∂tĈ(z, t) = −i

∫
dz′V (z − z′)Ŝ(z′, t)†Ŝ(z, t)Ĉ(z′, t) (22)

The interaction between a single signal and gate photon can be described by the two-body wavefunction:

|ψ2(t)〉 =
∫

dzdz′EC(z, z′, t)Ê†(z)Ĉ†(z′)|0〉+
∫

dzdz′PC(z, z′, t)P̂†(z)Ĉ†(z′)|0〉

+

∫
dzdz′SC(z, z′, t)Ŝ†(z)Ĉ†(z′)|0〉. (23)

Here the amplitudes EC(z, z′, t) = 〈0|Ê(z)Ĉ(z′)|ψ(t)〉, PC(z, z′, t) = 〈0|P̂(z)Ĉ(z′)|ψ(t)〉, and SC(z, z′, t) =

〈0|Ŝ(z)Ĉ(z′)|ψ(t)〉 correspond, respectively, to a signal photon, intermediate state, or nS-Rydberg excitation at
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FIG. S2: Loss coefficient (red) and hopping strength (blue) as given by Eqs. (28) in the limit of a very slowly propagating
polariton, ω = K = 0.

position z, with the n′P spin wave stored at position z′. Their evolution equations follow by substitution into
Eqs. (19)-(22), which gives

(∂t + c∂z)EC(z, z′, t) =− iḡPC(z, z′, t)
∂tPC(z, z′, t) =− iḡEC(z, z′, t)− iΩSC(z, z′, t)− γPC(z, z′, t)

∂tSC(z, z′, t) =− iΩPC(z, z′, t)− i
C3

|z − z′|3SC (z′, z, t) . (24)

Transforming into the center-of-mass frame with r = |z− z′| and R = z+ z′ and Fourier transforming the resulting
equations with respect to time and R (t → ω and R → K) one can derive a single equation for ψ ≡ EC

∂rψ (±r,K, ω) = ±A (r, ω)ψ (±r,K, ω)± iB (r, ω)ψ (∓r,K, ω) (25)

with the complex coefficients

A (r,K, ω) = i
ḡ2

c (ω − iγ)
− iK − i

ω

c
+ i

ḡ2Ω2

c (ω − iγ)
2

ω − Ω2

ω−iγ(
ω − Ω2

ω−iγ

)2
− V (r)

2

B (r, ω) =
ḡ2Ω2

c (ω − iγ)
2

V (r)(
ω − Ω2

ω−iγ

)2
− V (r)

2
. (26)

Since r ≥ 0, the wave function is defined such that ψ(−r) and ψ(+r) describe a signal photon propagating towards
and away from the spin wave, respectively.

The advantage of such a splitting of the position-space is that the two sectors are related by the complex transmission
amplitude T (r,K, ω) = ψ(+r)/ψ(−r), for which one obtains a closed equation

∂rT = 2AT + iB(1 + T 2), (27)

subject to the initial condition T (r = 0,K, ω) = 1. While Eq. (27) does not feature a general analytical solution, one
can treat several important limiting cases as described below.

A. Absorptionless solution in the cw-limit

For long (quasi-continuous) signal and gate pulses we may take Eqs. (26) at ω = K = 0 such that the coefficients
become real

A0(r) = A(r, 0, 0) = −ODb

2rb

r6b
r6b + r6

, B0(r) = B(r, 0, 0) =
ODb

2rb

r3br
3

r6b + r6
. (28)
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This equation shows that B0(r) corresponds to the strength of the coherent hopping while the coefficient A0(r)
causes photon loss, i.e. linearly damps the transmission amplitude in Eq.(27). Since A0 ∼ r−6 drops much more
rapidly that B0 ∼ r−3 for large distances r � rb (see Fig. S2), we may neglect the A0 to obtain a particularly simple
solution

T0(r) = tan

[
π

4
+ i

∫ r

0

B0(r
′)dr′

]
, (29)

of Eq.(27). Indeed there is no absorption in this limit since T0(r) = eiϕ(r). The accumulated phase of the outgoing
photon

ϕ0(∞) = acos

⎡
⎣cosh

(
ODb

√
3

9
π

)−1
⎤
⎦ −→

ODb�1

π

2
− 2e−ODb

√
3

9 π, (30)

exponentially approaches π/2 for a large optical depth per blockade radius ODb. Substituting the calculated trans-
mission amplitude into Eq. (25) and using Eq. (27) we can also determine the actual wave function

ψ(±r) =
cosh

[∫ r

0
B0(r

′)dr′
]± i sinh

[∫ r

0
B0(r

′)dr′
]

cosh
[
ODb

√
3

18 π
]
− i sinh

[
ODb

√
3

18 π
] ψ(−∞). (31)

For large distances r � rb we can approximate B0(r) ≈ ODb

2
r2b
r3 to solve the involved integral

∫ r

0

B0(r
′)dr′ ≈

∫ ∞

0

B0(r
′)dr′ − ODb

2
r2b

∫ ∞

r

r′−3dr′ = ODb

(√
3π

18
− r2b

4r2

)
(32)

and obtain the asymptotic solution

ψ(±r) ≈
r�rb

cosh
[
ODb

(√
3π
18 − r2b

4r2

)]
± i sinh

[
ODb

(√
3π
18 − r2b

4r2

)]
cosh

[
ODb

√
3

18 π
]
− i sinh

[
ODb

√
3

18 π
] ψ(−∞)

≈
ODb�1

1± i

1− i
e−ODb

r2b
4r2 ψ(−∞) (33)

which for OD � 1 approaches the solution given in the main text. As shown in Fig. S3, this solution provides a
reasonably good description of the numerical results already for moderate values of ODb, while the vanishing of ψ(r)
for r < rb provides a self-consistency test of the applied approximations. The main difference between the analytical
solution and the numerical result stems from the photon losses for which we will now derive an analytical estimate.

B. Leading-order absorption

The simple solution permits us to determine the residual photon loss in the limit of large ODb by perturbatively
accounting for the amplitude decay coefficient A0(r). Using standard perturbation theory with A0(r) as the small
parameter, the leading correction to the transmission amplitude is obtained from

∂rT1(r) = 2A0(r)T0(r) + iB0(r)2T0(r)T1(r), (34)

which subject to the boundary condition T1(0) = 0 has the following solution

T1(r) = 2

∫ r

0
A0(z

′) cosh
[
2
∫ z′

0
B0(z

′′)dz′′
]
dz′

1− i sinh
[
2
∫ r

0
B0(z′)dz′

] (35)

Using Eq. (32), we can approximately solve the integrals and obtain the total transmission amplitude

T (∞) −→
ODb→∞

T0(∞) + T1(∞) = i

(
1− 3

√
2π

2
OD

−3/2
b

)
, (36)
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FIG. S4: (a) Signal photon absorption and (b) acquired phase as a function of ODb. Symbols show numerical results while the
solid and dashed lines show the asymptotic large-ODb [Eqs. (36) and (33)] and small-ODb [Eq. (37)] solutions, respectively.

which shows that the photon loss asymptotically decreases as 1− |T |2 = 3
√
2πOD

−3/2
b for large ODb.

Similarly we can perform a perturbative expansion in the simpler limit of ODb � 1, which gives T0 = 1 to zeroth
order in ODb, and

T (∞) −→
ODb→0

T0(∞) + T1(∞) = 1− π

3

(
1− i√

3

)
ODb. (37)

As shown in Fig. S4, the derived scaling laws quantitatively reproduce our numerical results in both relevant limits.

C. Propagation effects

With the outlined formalism, the leading-order inclusion of propagation effects becomes straightforward. To this
end we now consider a finite medium of constant density and length 2L extending from −L to L. Repeating the above
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derivation, with A0 replaced by A0 − iK − iω/vg, gives the following asymptotic (r > rs) solution of Eq. (35)

T (r,K, ω) = i

(
1− 3

√
2π

2
OD

−3/2
b

)
+ 2(K + ω/vg)(r −

√
πODb/2rb)

≈ i

(
1− 3

√
2π

2
OD

−3/2
b

)
e−2i(K+ω/vg)(r−√

πrs). (38)

Using the last expression in ψ(r,K, ω) = T (r,K, ω)ψ(−r,K, ω) and applying the free propagator, ψ(r′,K, ω) =

e−i(K+ω/c)(r′−r)ψ(r′,K, ω) for r, r′ � rs, then lets us Fourier transform back to time t and R and write the outgoing
two-body state as

ψ(z = L, z′, t) = i

(
1− 3

√
2π

2
OD

−3/2
b

)
C
(
z′ +

√
πrs
)
Ein

(
t− L−√

πrs
vg

)
(39)

in terms of the initial spin wave profile C(z) and the incident signal-field mode Ein(t). We see that the dipole-dipole
interaction does not cause any pulse distortion but gives rise to a homogenous spatial shift

√
πrs. Note that the above

derivation is only accurate to leading order in the bandwidth of both photons and, thus, requires that the spatial
extent of the gate spin wave and the EIT-compressed signal photon pulse are both substantially larger than rs. As a
consequence the ideal scenario, Eq. (39), eventually deviates from the exact behavior as the optical depth per blockade
radius is increased to too large values (see Fig.S5).

D. Derivation of Eq.(1) in the main text

Having established the vanishing of the two-body wave function for distances below rs =
√
ODb/2rb, we can use

an asymptotic r/rb → ∞ expansion of the coefficients Eq. (26) to simplify the propagation equations (25) in the limit
of ODb � 1. With the definition of rb, this is equivalent to a Taylor expansion in Vex(r)/(Ω

2/γ) � 1 which yields

A (K,ω) ≈ −iK − i
ω

vg
, B (r) ≈ ḡ2

cΩ2
Vex(r) (40)

to linear order in ω/(Ω2/γ) and Vex/(Ω
2/γ). With these expressions Eq. (25) simplifies to

∂rψ (±r,K, ω) = ∓iKψ(±r,K, ω)∓ i
ω

vg
ψ(±r,K, ω)± i

ḡ2

cΩ2
Vex(r)ψ(∓r,K, ω) (41)

Using ḡ2 � Ω2 and Fourier transforming back to t and R we thus obtain

∂rψ(±r,R, t) = ±∂Rψ(±r,R, t)± v−1
g ∂tψ(±r,R, t)± iv−1

g Vex(r)ψ(∓r,R, t) (42)

and in terms of z and z′

∂tψ(z, z
′, t) = −∂zψ(z, z

′, t)− iVex(z − z′)ψ(z′, z, t), (43)

which coincides with Eq.(1) of the main text. Its stationary solution, presented in the main text, agrees with Eq.(33),
as expected.

Following these arguments, the asymptotic treatment of the wave function for r � rb is equivalent to a perturbative
expansion for small interactions Vex � Ω2/γ. Under this condition the photon propagation can be described in terms
of a dark-state polariton which follows Eq.(43). For ODb � 1, the exchange-driven photon collision can thus be
understood as a collision between dark-state polaritons. In contrast to previous Rydberg-EIT schemes where the van
der Waals interaction inevitably causes coupling to bright state polaritons at distances r � rb, such processes are
inhibited by the long-range hopping at a distance rs � rb. This mechanism is key to the observed low photon losses.

V. MODELING THE COMPLETE EXPERIMENT

Now we turn to producing a complete model for the experiment, including finite pulse duration and bandwidth effects,
dephasing, and the finite size of the atomic cloud. At the end, we present numerical simulations of this model to
compare to the experimental results. To begin, we divide the experimental sequence into three stages:
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A. the gate-photon storage into a nS-Rydberg spinwave and microwave transfer to a n′P Rydberg state, creating
a n′P spinwave excitation at time t = 0,

B. its interaction with the incident signal photon extending from t = 0 to t = T ,

C. followed by back-transfer of the gate excitation to an nS-Rydberg spin wave and subsequent retrieval (t ≥ T ),

which we will describe separately below. The timing of the different stages and associated computational steps is
illustrated in Fig. S6.

We extend the Heisenberg equations (19-22) to include dephasing and detuning terms, as well as inhomogeneous
atomic density:

(∂t + c∂z)Ê(z, t) = −ig
√
ρ(z)P̂(z, t) (44)

∂tP̂(z, t) = −ig
√
ρ(z)Ê(z, t)− iΩŜ(z, t)− γP̂ (z, t) (45)

∂tŜ(z, t) = −iΩP̂(z, t)− i[Δs(z)− iγs]Ŝ(z, t)
− i

∫
dz′Vex(z − z′)Ĉ†(z′, t)Ĉ(z, t)Ŝ(z′, t) (46)

∂tĈ(z, t) = −iΔc(z)Ĉ(z, t)− i

∫
dz′Vex(z − z′)Ŝ(z′, t)†Ŝ(z, t)Ĉ(z′, t) (47)

-0.4 -0.2 0 0.2  0.4 -0.6 -0.4 -0.2           0          0.2         0.4         0.6

∫
|EC(L, t, z)|2dz

∫
|EC(L, t, z)|2dt

t/τ z/σ

O
D

b

24

20

16

12

8

4

0

(a) (b)

FIG. S5: (a) Transmitted signal photon intensity and (b) final probability density of the gate spin wave for different values
of ODb. The numerical simulations have been performed for a signal pulse duration of τ = 400(Ω2/γ)−1, a gate spin wave of
length σ = 40rb, vg/c = 0.01 and Ω/γ = 1. The crosses mark the numerical center of the photon pulse and spinwave density
and the dashed lines show the analytical prediction Eq. (39).
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FIG. S6: Schematic illustration of photon collision sequence and involved computational steps. (a) Following the storage of a
gate photon in a spin-wave mode C(z′), the signal photon enters the EIT medium at (z = −L) with a temporal pulse envelope
Ein(t). (b) During the interaction stage the correlated dynamics of the signal photon and the gate spin wave is described by the
two-body amplitude EC(z, z′, t). Upon detection the transmitted signal photon at z = L and a time ts, the gate spinwave is
left in a mode EC(L, z′, ts). At each exit time ts this amplitude is used as an initial condition for retrieval of the gate spinwave.
(c) At each detection time ts this amplitude provides the initial condition for determining the amplitude of the outgoing gate
photon detected at time tg, from which we obtain the two-photon amplitude EE(ts, tg).

The atomic density ρ(z) = ρ0f(z) has a Gaussian f(z) = e−z2/(2σ2) profile along the propagation axis, with a
spatial width σ and peak density ρ0. g is the bare atom-light coupling. The position-dependent detunings Δs (z) and
Δc (z) for the nS and n′P states arise from interactions between ground state atoms and the excited Rydberg atoms,
which vary according to the ground-state atomic density as discussed in section VII. γs accounts for the linewidth of
the nS Rydberg state.

A. Gate photon storage

The signal photon is first stored in a Rydberg spin wave in the nS state and transferred to a n′P excitation as
described in the main text. Since our experiment uses a weak coherent pulse, it suffices to retain only the vacuum
component, εg(t)|0〉 and the single-excitation component

|ψg(t)〉 =
∫

dzC(z, t)Ĉ†(z)|0〉 (48)

of the produced spin wave state, where the amplitude C(z, t = 0) denotes the mode profile of the spin wave right after
storage. To simplify notation we further approximate εg(t) ∼ 1.

B. Interaction stage

Due to the dipolar excitation exchange, the propagation of the subsequent signal pulse requires a two-body treat-
ment, even though the stored n′P excitation is not coupled by the classical control field Ω. Again, retaining only
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the vacuum and single-photon components of the incident signal pulse, the pure contribution to the total state of the
system can be written as

|Ψ(t)〉 = |0〉+ |ψg(t)〉+ |ψs(t)〉+ |ψ2(t)〉. (49)

Impure parts resulting from the intermediate state decay do not need to be considered since the resulting spinwave
decoherence precludes subsequent retrieval of the gate photon [4] and, thus, do not contribute to the observables
discussed below.

The single spin wave state, |ψg(t)〉 is given by Eq. (48) with:

C(z, t) = C(z, t = 0) exp[−iΔc(z)t] (50)

which follows from Eq. (47).
The wave function of the signal photon in the absence of a stored Rydberg excitation can be written as

|ψs (t)〉 =
∫

dz Es(z, t)Ê† (z) |0〉+
∫

dz P (z, t)P̂† (z) |0〉+
∫

dz S(z, t)Ŝ† (z) |0〉 . (51)

The evolution equations for the respective amplitudes Es(z, t) = 〈0|Ê(z)|ψs(t)〉, P (z, t) = 〈0|P̂(z)|ψ(t)〉, and S(z, t) =

〈0|Ŝ(z)|ψ(t)〉 follows from Eqs. (44-46) and are given by

(∂t + c∂z)Es(z, t) = −ig
√
ρ(z)P (z, t)

∂tP (z, t) = −ig
√
ρ(z)Es(z, t)− iΩS(z, t)− γP (z, t)

∂tS(z, t) = −iΩP (z, t)− i[Δs(z)− iγs]S(z, t) . (52)

These equations are solved numerically within a spatial range −L ≤ z ≤ L. Assuming that the signal photon initially
(t = 0) resides outside of this region at z < −L and taking L � σ such that ρ(±L) ≈ 0, the initial and boundary
conditions are Es(z, 0) = P (z, 0) = S(z, 0) = 0 and Es(−L, t) = Ein(t), where Ein(t) defines the temporal envelope of
the incident signal pulse.

The two-body wavefunction is defined in Eq. (23). Its evolution is follows from substitution into Eqs. (44-47):

(∂t + c∂z)EC(z, z′, t) =− ig
√
ρ(z)PC(z, z′, t)− iΔc(z

′)EC(z, z′, t)

∂tPC(z, z′, t) =− ig
√
ρ(z)EC(z, z′, t)− iΩSC(z, z′, t)− γPC(z, z′, t)

− iΔc(z
′)PC(z, z′, t)

∂tSC(z, z′, t) =− iΩPC(z, z′, t)− i[Δs(z)− iγs]SC(z, z′, t)

− iΔc(z
′)SC(z, z′, t)− i

C3

|z − z′|3SC (z′, z, t) . (53)

The initial conditions for −L ≤ z, z′ ≤ L are EC(z, z′, t = 0) = PC(z, z′, t = 0) = SC(z, z′, t = 0). Since the two-
body amplitudes factorize for z < −L, we have the boundary condition EC(−L, z′, t) = Ein(t)C(z, t) where C(z, t)
is given by Eq. (50). The simultaneous numerical solution of Eqs.(50), (52) and (53), with the described initial and
boundary conditions, thus yields completes knowledge about the two-body state Eq.(49).

A photodetector placed at z = L then registers an outgoing signal photon at time ts with a probability

〈Ê†(L, ts)Ê(L, ts)〉 = 〈Ψ(ts)|Ê†(L)Ê(L)|Ψ(ts)〉 ≡ 〈Ψ̃(ts; ts)|Ψ̃(ts; ts)〉, (54)

where

|Ψ̃(ts; ts)〉 = Es(L, ts)|0〉+
∫

dzEC(L, z, ts)Ĉ†(z)|0〉. (55)

The amplitude of the spin-wave component after signal-photon detection still picks up a phase due to the random
level shift Δc(z), such that the state of the system at the end of the interaction stage (t = T ) is given by

|Ψ̃(T ; ts)〉 = εg(ts)Es(L, ts)|0〉+
∫

dzEC(L, z, ts)e
−iΔc(z)(T−ts)Ĉ†(z)|0〉. (56)
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C. Spinwave retrieval

Following the interaction stage, the stored n′P spin wave is transferred back to an nS excitation and finally retrieved
by turning the classical control field back on. The probability to detect the retrieved gate-photon at time tg in the
absence of a signal photon is given by |Eg(L, tg)|2, where the amplitude is determined by the single-photon propagation
equations

(∂t + c∂z)Eg(z, t) = −ig
√
ρ(z)P (z, t)

∂tP (z, t) = −ig
√
ρ(z)Eg(z, t)− iΩS(z, t)− γP (z, t)

∂tS(z, t) = −iΩP (z, t)− i[Δs(z)− iγs]S(z, t) . (57)

subject to the initial Eg(−L, t) = P (−L, t) = S(−L, t) = 0 and initial conditions Eg(z, T ) = P (z, T ) = 0 and
S(z, T ) = C(z, T ), where C(z, T ) is given by Eq. (50).
Similarly, the amplitude of the retrieved photon after detection of a signal photon at time ts is obtained from the

evolution equations

(∂t + c∂z)E2(z, t; ts) = −ig
√
ρ(z)P (z, t; ts)

∂tP (z, t; ts) = −ig
√
ρ(z)E2(z, t; ts)− iΩS(z, t; ts)− γP (z, t; ts)

∂tS(z, t; ts) = −iΩP (z, t; ts)− i[Δs(z)− iγs]S(z, t; ts) . (58)

with the boundary conditions E2(−L, t; ts) = P (−L, t; ts) = S(−L, t; ts) = 0 and initial conditions E2(z, T ; ts) =
P (z, T ; ts) = 0 and S(z, T ; ts) = EC(L, z, ts)e

−iΔc(z)(T−ts) [see Eq. (56)]. For each signal photon detection time ts we
thus have to propagate the one-body dynamics of the gate photon to finally obtain the two-time amplitude

EE(ts, tg) = E2(L, tg; ts) (59)

for detecting both photons at times ts < T and tg > T .

VI. OBTAINING OBSERVABLES FROM NUMERICAL SIMULATIONS

In the following we describe how our observables presented in the main text are obtained from the two-time
amplitude Eq. (59).

A. Conditioned signal photon transmission

It follows from the above discussion that the two-time correlation function

〈Ê†(L, ts)Ê†(L, tg)Ê(L, tg)Ê(L, ts)〉 = |EE(ts, tg)|2 (60)

is simply given by the joint probability Eq. (59). The signal photon transmission conditioned on detecting a gate
photon is, thus, proportional to integral

∫
dtsdtg|EE(ts, tg)|2. To calculate the relative transmission presented in the

main text we have to compare this quantity to the equivalent result without interactions, for which EE(ts, tg) =
Es(ts)Eg(tg) [obtained from Eq. (52) and Eq. (57)], giving the conditioned relative transmission

Tc =

∫
dtsdtg|EE(ts, tg)|2∫

dtsdtg|Es(ts)|2|Eg(tg)|2 , (61)

shown in Fig. 3 of the main text. Similarly, we can calculate the outgoing pulse shape of the signal photon

Is(t) =

∫
dtg|EE(t, tg)|2, (62)

and the gate photon

Ig(t) =

∫
dts|EE(ts, t)|2. (63)

The comparison to our measured photon pulses in Fig. S7 demonstrates that the simulations even reproduce such
more sensitive observables remarkably well.
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FIG. S7: Photon count rates of the signal photon (red) and retrieved gate photon (blue), measured in the presence (squares)
and in the absence (circles) of dipolar excitation exchange. The experimental count rates are compared to the simulated pulse
envelopes with (dashed lines, grey area) and without (solid lines) interactions. Each set of red and blue curves has been scaled
by a single common factor in order to convert from the theoretical pulse envelopes to the observed count rates.

B. Acquired phase of the signal photon

In order to obtain the phase of the transmitted signal photon we superimpose the output by a reference field that
does not interact with the medium, as described in the Methods. Taking the reference field to be a weak coherent
pulse with a mode function Eref(z, t), its quantum state can again be approximated by

|ψref(t)〉 ≈ |0〉+
∫

dzEref(z, t)E†(z)|0〉. (64)

Since all involved photon pulses are weak coherent fields, we can moreover discard any three-body contributions to
the combined state |Ψ3(t)〉 = |Ψ(t)〉|ψref(t)〉, with |Ψ(t)〉 given by Eq. (49). Upon detection of a signal photon at time
ts we thus get

Ê(L)|Ψ3(ts)〉 = [Es(L, ts) + Eref(L, ts)] |0〉+
∫

dzEref(z, ts)Es(L, ts)E†(z)|0〉

+

∫
dzEref(L, ts)

[
C(z, ts)Ĉ†(z) + P (z, ts)P̂†(z) + S(z, ts)Ŝ†(z)

]
|0〉

+

∫
dzEref(L, ts)Es(z, ts)Ê†(z)|0〉+

∫
dzEC(L, z, ts)Ĉ†(z)|0〉 (65)

Taking this to be the initial state |Ψ̄3(t = ts; ts)〉 = Ê(L)|Ψ3(ts)〉 for the description of the subsequent spin wave
retrieval as described in section VC, we obtain after detection of a photon at time tg

Ê(L)|Ψ̄3(tg; ts)〉 =Eref(L, tg)Es(L, ts)|0〉+ Eref(L, ts)Es(L, tg)|0〉
+ Eref(L, ts)Eg(L, tg)|0〉+ EE(ts, tg)|0〉 (66)

Noting that Eref(L, t) and Es(L, t) both vanish for t = tg > T , i.e. during the gate field detection window, we can
drop the first line and obtain for the conditioned photon detection probability∫ ∞

T

dtg〈Ê†(L, ts)Ê†(L, tg)Ê(L, tg)Ê(L, ts)〉 =|Eref(L, ts)|2|Eg(L, tg)|2 + |EE(ts, tg)|2

+ 2Re
[
E∗

ref(L, ts)E
∗
g (L, tg)EE(ts, tg)

]
. (67)
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The relative phase between the signal and reference field can be read off directly from the last line. Taking the
reference field amplitude to be real this phase is given by

ϕ(ts) = arctan

{
Im
[∫∞

T
dtgE

∗
g (L, tg)EE(ts, tg)

]
Re
[∫∞

T
dtgE∗

g (L, tg)EE(ts, tg)
]
}
. (68)

Even in the absence of interactions, for which EE(ts, tg) = Es(L, ts)Eg(L, tg), one will detect a density-dependent
phase

ϕ0(ts) = arctan

{
ImEs(ts)

ReEs(ts)

}
. (69)

which is predominantly due to the random level shifts Δs(z) in Eq. (52). Since this phase is taken as a reference in
our experiments, the calculated phase

φc =

∫
dt[ϕ(t)− ϕ0(t)]Is(t), (70)

shown in Fig. 3 of the main text, is obtained by averaging the phase difference over the conditioned transmitted
signal intensity given in Eq. (62).

VII. SPIN WAVE DEPHASING DUE TO RYDBERG-GROUND STATE ATOM INTERACTIONS

Here we describe how we account for interactions between Rydberg and ground state atoms through the random
energy shifts Δc(z) and Δs(z). Such interactions arise when a ground state atom is found within the electronic orbit of
the Rydberg atom, and perturbs the electronic wave function of the Rydberg state through a low-energy electron-atom
collision [5, 6]. The collisional electron interaction, Ûe−a(R), with an atom at a position R away from the ionic core
of the Rydberg atom then couples different Rydberg states |α〉, |β〉 (with amplitudes ψα,β) with a matrix element

〈β|Ûe−a(R)|α〉 = 2πAsψ
∗
β(R)ψα(R) + 6πA3

p

[∇ψ∗
β(R)

] · [∇ψα(R)] . (71)

This can be well described via a zero-range pseudopotential [5] with energy-dependent s-wave and p-wave scattering
lengths, As and Ap, respectively, whereby the electron energy can be semiclassically related to the scattering center
R [6, 7]. The shifted energy spectrum of the Rydberg atom can then be obtained by diagonalizing the underlying

Hamiltonian E
(0)
α δα,β + 〈β|Ûe−a(R)|α〉, where E(0)

α is the unperturbed binding energy of the Rydberg atom in a given
state |α〉.

In the present situation, multiple ground state atoms may simultaneously shift a Rydberg state in the dense
atomic cloud. The energy levels, Eα(R1, ...,RN ), collectively perturbed by N atoms at positions Ri (i = 1, ..., N)

relative to the Rydberg atom core can still be straightforwardly obtained by diagonalizing the matrix E
(0)
α δα,β +∑N

i=1〈β|Ûe−a(Ri)|α〉.
To calculate the resulting level shift of a delocalized Rydberg state spin wave, we randomly sample atomic positions,

ri, according to our density distribution ρ(z) within a cylindrical volume along the light propagation axis, ez, assuming
a constant density in the transverse direction. The spatially fluctuating energy shift ΔEα(z) = Eα(r1 − ezz, r2 −
ezz, , ...)−E

(0)
α can then be calculated on the z-axis along which we solve the field propagation equations, as described

in section V. As shown in Fig. S8, the mean level shift follows the atomic density [8], while the spatial fluctuations
for a given random configuration are comparable to the actual average shift.

For the actual calculations we repeatedly simulate the two-photon dynamics as outlined in section V for a given
random realization of ΔEα(z), and average the final observable over the Monte Carlo ensemble. Specifically, the
conditioned transmission and the phase shown in Fig. 3 of the main text are determined as

Tc =

〈∫
dtsdtg|EE(ts, tg)|2

〉〈∫
dtsdtg|Es(ts)|2|Eg(tg)|2

〉 , (72)

and

φc =

〈∫
dt[ϕ(t)− ϕ0(t)]Is(t)

〉
, (73)
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FIG. S8: Spatially fluctuating energy shifts due to interactions between Rydberg and ground-state atoms for the two relevant
Rydberg states |100S1/2〉 (blue) and |99P3/2〉 (red) for the cloud geometry of our experiments and three different peak densities
corresponding to OD = 10 (a), OD = 30 (b) and OD = 50 (c). The thick solid line shows the average level shift and the
shaded area indicates the standard deviation of the ensemble. The individual Monte Carlo results shown by the thin black
lines illustrate the strong spatial fluctuations in all cases.

respectively, where 〈...〉 denotes the Monte Carlo average over the ensemble of random atom configurations. Note
that the shaded areas in Fig. 3 of the main text does not reflect the statistical error of the calculated average (which
is small for the 104 configurations used in the calculation) but indicates the extent of the classical fluctuations of Tc

and φc resulting from the randomly distributed atoms in the cold gas.
In our experiments we adjust the two-photon detuning to the transmission maximum of the EIT medium in the

absence of the gate spin wave. Therefore, we first calculate the average transmission spectrum to determine the
frequency shift, ΔT, induced by Rydberg-ground state atom interactions for a given optical depth OD of the medium.
The detunings Δs and Δc of Eqs.(46) and (47) are then obtained from

Δα(z) = ΔEα(z)−ΔT (74)

for the |100S1/2〉 (α = s) and the |99P3/2〉 (α = c) Rydberg states.
The Monte Carlo simulations also permit the role of Rydberg-ground state dephasing to be separated from other

loss mechanisms. To this end we have simulated the photon propagation with and without the random level shifts
Δs and Δc and calculated the reduction η of the two-photon transmission. The ratio η/η(0) of this reduction with
(η) and without (η(0)) dipolar excitation exchange (see Fig. S9), shows that the interaction significantly improves the
performance of our protocol due to a motional averaging effect arising from the exchange-driven spin wave hopping.
This effect improves the transmission by nearly a factor of two at the highest densities. Lastly, the simulations allow
the effect of the mean shift (which follows the atomic cloud shape) to be separated from the fluctuating component
of the shift which results from random atomic positions. At the highest densities used in the experiment, the mean
shift contributes approximately half of the total dephasing of the retrieval, with the rest coming from “atomic shot
noise”. While the mean shift does not change with the principal quantum number of the Rydberg level [8], the shot
noise contribution decreases as n increases, since more ground state atoms participate and the fluctuations in their
positions become less important.
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FIG. S9: The suppression, η, of the two-photon transmission by Rydberg-ground state atom interactions is significantly reduced
by dipolar photon-spin wave hopping relative to the case of no interactions (η(0)). The ratio η/η(0) is shown as function of OD,
and for parameters of our experiments as used in Fig. 3 of the main text.

VIII. METHODS

A. Experimental procedure

The 87Rb atoms used for this experiment are cooled in a 3D magneto-optical trap (MOT) and loaded into a 1064 nm
crossed optical dipole trap made with two horizontal beams crossed at a 32◦ angle [9, 10]. Each beam has a power of
8 W and a 50 μm waist, resulting in a cigar-shaped density profile with a 4:1 trap aspect ratio. After loading into the
dipole trap, the gas is cooled to 20 μK using degenerate Raman sideband cooling in a near-detuned lattice. The peak
atomic density at the highest optical depth is approximately ρ = 1.9 × 1012 cm−3, which corresponds to a resonant
absorption length of 1.8 μm for the probe field. Cooling and loading last for 300 ms, and then 1000 measurements are
performed with a repetition period of 38 μs before preparing a new sample. The dipole trap is switched off during
each measurement (for 7 μs) to avoid AC Stark shifts of the Rydberg levels. The gas is probed along the long axis of
the cloud, as shown in Fig. 1.

The probe and control lasers are stabilized to a common cavity, and have a short-term linewidth of approximately
2π×100 kHz. The 3.72 GHz microwave field driving 100S1/2 to 99P3/2 is delivered by an antenna outside the vacuum
chamber. For measurements involving other Rydberg states (Fig 3 insets), the microwave field drives a two-photon
transition from 100S1/2 to 99S1/2 (at 3.67 GHz microwave frequency) or to 97S1/2 (at 11.4 GHz).

B. Phase-shift measurements

Phase-shift measurements are performed by interfering the transmitted probe field E with a weak local oscillator
(LO) beam, which is detuned by -158 MHz from the probe. The LO is delivered to the experiment through the same
fiber as the probe, and has a similar intensity. This detuning and power ensure that the LO does not interact with the
Rydberg levels, so any phase shift in the probe-LO beatnote arises from phase shifts in the probe field. The LO has a
square pulse shape and is switched on at the same time as the signal pulse. The probe-LO beat signal is delivered to
single-photon counting modules, and the beat amplitude and phase are extracted from the timing of photon detection
events. A slight non-uniformity of the phase across the pulse (visible in the light points in Fig. 2D) appears to result
from rate-dependent timing delays in the detectors. Zero phase in Fig. 2D is defined by a control experiment without
interactions, achieved by setting nin

g = 0. This phase is slightly different from the phase measured without any atoms
present, and results from the effects of atomic dispersion on the far-detuned LO, as well as small phase shifts on the
probe arising from a minority of atoms not prepared in |F = 2,mF = 2〉. Lastly, because of the negative detuning of
the LO, the positive phase shift of the beatnote that is shown in Fig. 2D/3B actually corresponds to a phase lag of
the probe, in agreement with the negative phase shift predicted by the solution to Eq. (1) for C3 > 0.

WWW.NATURE.COM/NATURE | 17

SUPPLEMENTARY INFORMATIONRESEARCHdoi:10.1038/nature



η̃s η̃g η̃2 ηI η2

current 0.56 0.06 0.034 0.8 0.027

improved 0.99 0.93 0.92 0.95 0.88

TABLE II: Summary of efficiency measurements. The single-photon transmission probabilities for the signal and gate fields, in
the absence of interactions, are η̃s and η̃g, respectively. The probability that two incident photons would both be transmitted
in absence of interactions is η̃2 = η̃sη̃g. Interactions result in an additional loss captured by ηI , such that the probability for
two photons to be transmitted with a phase shift is η2 = η̃sη̃gηI . ηI was measured using the signal (gate) field to be 0.77 (0.82);
here, we take the average value 0.80.

C. Photon loss

The losses in the experiment are largely technical in origin and can be reduced through several straightforward
improvements. The losses are summarized in Table II, and the possible improvements are discussed below.

The linear (non-interacting) signal transmission η̃s = 0.56 is limited primarily by laser linewidth and imperfect
optical pumping of atoms to the |2, 2〉 state (atoms in other states will not experience EIT resonance at the same laser
frequency). It should be possible to improve η̃s to nearly 1 by reducing the laser linewidth further and improving
the optical pumping or applying a larger magnetic field to shift the absorption profiles of other ground states away
from the probe laser frequency. Other dephasing effects, such as Doppler broadening and collisions between ground
state atoms and Rydberg atoms (section VII) are slowly varying and produce a transmission decay that is Gaussian
as a function of the time the photon spends in the cloud. For the signal photon, which is not stored, we estimate the
impact of these effects on η̃s be less than 0.01 during the 180 ns transit time of the signal photon.

The linear (non-interacting) storage and retrieval efficiency is currently η̃g = 0.06. Separate measurements show
that the storage and retrieval efficiency with only 100 ns storage time is 0.4, which then decreases to 0.06 at the 1.5
μs storage time needed to complete the interaction sequence. The storage and retrieval efficiency at short times is
limited by the same effects as the signal transmission, as well as the finite optical depth: in Ref. [11] it is shown that
the achievable storage and retrieval efficiency scales as 1 − 5.8/OD using optimized pulses and backwards retrieval.
Therefore, this number could be improved to 0.84 with our current OD, and to 0.95 with OD doubled to 100.

The impact of the long storage time is more significant. The decrease in retrieval efficiency comes from dephasing
of the stored spin wave, with contributions from Doppler broadening and collisions between ground state atoms and
Rydberg atoms, as discussed in section VII. Doppler broadening can be significantly reduced by going to lower
temperatures. The collisional dephasing contains two contributions: random atomic positions (atomic shot noise)
within the Rydberg orbit, as well as non-uniform density envelope across the cloud. The latter can be improved
using a flat-bottom optical potential (as discussed in [13]), while the atomic shot noise can be improved by moving to
higher principal quantum number, which has the effect of increasing the number of ground state atoms involved but
decreasing the contribution from each individual atom [8], reducing the shot noise as n−3, where n is the principal
quantum number. To make the (Gaussian) Doppler and collisional dephasing decays less than 2% each during the
storage time of 1.5 us, we need to improve the temperature by a factor of 5, and the impact of the collisional dephasing
by a factor of 10. I the latter case, a factor of two can be obtained from the flat-bottom potential, with the remaining
factor of 5 coming from an increase in the principal quantum number to n = 170. Even with these changes, we
will remain far from the regime where inelastic collisions with ground state atoms will play a role on the relevant
timescales [12]. Together, these improvements can yield a storage and retrieval efficiency of about 0.93.

The additional losses resulting from the interaction process are shown in Eq. 36 to scale as ηI = 1− 3
√
2πOD

−3/2
b ,

depending only on ODb. To reach ηI = 0.95, we will require ODb = 30. ODb increases with n4/3, so increasing the
quantum number to 170 together with increasing the atomic density by a factor of 2.5 (through additional cooling
or larger total atom number) will achieve the desired result. Reducing the control Rabi frequency Ωc during the
signal pulse will allow ODb to be further increased, at the expense of increasing the required storage time—there is
an optimum value.

Taken together, it seems realistic to achieve combined linear transmission for the signal and gate photon of 0.99 and
0.93, and nonlinear losses of 0.95. This would result in a total transmission probability for two interacting photons
of 0.88. Given that the dominant error in the interaction process is photon loss and not error in the phase shift, and
that photon loss can be heralded by the absence of transmitted photons, we expect that higher-fidelity operations can
be probabilistically achieved.
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FIG. S10: A) Pulse shapes measured by the detectors shown in Fig. 4A of the main text. The full data record is averaged to
produce these curves. B) Photon pair detection events. The parallel (crossed) arrows denote the number of signal and gate
pairs detected in their incident (swapped) modes. The left two bars show the result of the alternate pulse sequence without
interactions, while the right two bars show the result of the pulse sequence in panel A, where interactions are expected to be
present. From left to right, the y-axis values are 2499, 42, 165, and 231.

D. Two-mode measurements

For the measurements in Fig. 4 with two optical modes, two independently-aligned beams (modes A, B) are nearly
overlapped on a beamsplitter before entering the chamber. Their separation (5.4 μm) is measured using a CCD camera
that images the focal plane in the center of the atomic cloud. The output light is directed to two single-mode fibers
by a beamsplitter. One of the fibers is aligned to each mode, allowing them to be separately detected by independent
photodetectors. There is a small amount of crosstalk resulting from imperfect fiber alignment and finite separation
between the modes (about 10% of the light detected in the mode A photon counter is actually from mode B, and
vice-versa).

E. Pair detection events in separated optical mode measurements

Here, we describe additional measurements used to estimate the probability of photons hopping between spatially
separated modes as described in Fig. 4 of the main text. This measurement involves alternating between the pulse
sequence shown in Fig S10A and another sequence where the signal pulse is sent after the gate pulse is retrieved. In
the latter sequence, the signal and gate fields experience the same loss, but do not interact with each other as they
are never present in the cloud at the same time. The difference between these measurements allows the influence of
interactions to be isolated.

Fig S10A shows the measured pulse shapes at each detector (Fig. 4A). As in the main text, the gate (signal) pulse
is incident in mode A (B). The majority of the light in the “wrong” detector (e.g., signal light in detector A) results
from a slight mixing of the modes at the detectors (approximately 10%), since the modes are not perfectly orthogonal.
To see the role of interactions above this background, we look at photon pair events as shown in Fig. S10B. Without
interactions, approximately 1.7(3)% of all transmitted pairs are in “swapped” modes. With interactions, 58(2)% of
pairs exit in swapped modes, although the overall transmission is much lower. In analogy with Tc defined in Fig. 3 of
the main text, we isolate the role of interactions over single-particle loss by computing the ratio of the number of pairs
exiting in swapped modes (with interactions) to the total number of transmitted pairs in the absence of interactions.
This yields 8.3(5)%, which we take as an estimate of the probability for a photon pair to switch modes as a result of
the interaction.

This value is significantly lower than Tc = 0.77 reported in Fig. 3 for photons in the same mode. We attribute this
to increased separation between the photons, as well as losses resulting from multiple signal and gate photons being
present during the same pulse, since this measurement was performed with 〈nin

g 〉 ≈ 〈nin
s 〉 ≈ 1.
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