TIOP PUBLISHING

PHYSICA SCRIPTA

Phys. Scr. T135 (2009) 014010 (4pp)

doi:10.1088/0031-8949/2009/T135/014010

Heralded atomic-ensemble quantum
memory for photon polarization states

Haruka Tanji'-?, Jonathan Simon'-?, Saikat Ghosh?, Benjamin Bloom

and Vladan Vuletié¢?

! Department of Physics, Harvard University, Cambridge, MA 02138, USA
2 Department of Physics, MIT-Harvard Center for Ultracold Atoms, and Research Laboratory
of Electronics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA

E-mail: vuletic@mit.edu

Received 8 January 2009

Accepted for publication 12 January 2009
Published 31 July 2009

Online at stacks.iop.org/PhysScr/T135/014010

Abstract

We describe the mapping of quantum states between single photons and an atomic ensemble.
In particular, we demonstrate a heralded quantum memory based on the mapping of a photon
polarization state onto a single collective-spin excitation (magnon) shared between two atomic
ensembles. The polarization fidelity above 90(2)% for any input polarization far exceeds the
classical limit of % The process also constitutes a quantum non-destructive probe that detects

and regenerates a photon without measuring its polarization.

PACS numbers: 03.67.Hk, 32.80.Pj, 42.50.Dv

(Some figures in this article are in colour only in the electronic version.)

1. Introduction: coherent mapping between single
photons and single magnons

A quantum memory, i.e. a system that can receive and store
quantum states that are ideally carried by photons, is a
key element for quantum information processing [1-9]. The
conceptually simplest quantum memory is a single two-level
atom. Coherent mapping between a photon and the atom that
is acting as a quantum memory requires the atom to appear
opaque to the photon. This can be achieved by focusing the
photon to a small area containing the atom, and passing it
through this area many times using mirrors with very low
loss [10]. In the optical domain an opacity (or resonant optical
depth 1) of ~100 can be achieved in this way [10, 11].

An alternative method for increasing the optical depth is
to use an ensemble [1-5], [12], rather than a single particle.
It may seem that an ensemble of non-interacting two-level
particles cannot be used as a memory for a quantum bit, as
the Hilbert space of the ensemble is much larger than that of
the photon, and most ensemble states do not couple strongly
to the photon [13]. However, using a probabilistic but heralded
process [1], it is possible to restrict the ensemble Hilbert
space to just two states where the atoms couple cooperatively
and strongly to the light field [13]. The effectiveness of this
method has been proved by the efficient (~90%) conversion
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of a single quantized spin-wave excitation of the ensemble
(magnon) into a photon [12].

2. Optical transfer of single magnon between
two atomic ensembles

If two ensembles are located inside an optical resonator, it is
possible to transfer a single spin-wave quantum between them
via the optical resonator while populating the resonator mode
only virtually [14]. The method is akin to stimulated adiabatic
rapid passage in a five-level system (see figure 1(b)), where
the system is transferred from the initial quantum state (|G, ),
magnon in ensemble A) to the final state (|Gg), magnon
in ensemble B) through three unstable intermediate states
(|EA),|En), corresponding to an excited atom in ensembles
A and B, respectively, and |C), corresponding to a photon
in the resonator). In the ideal limit of large optical depth the
unstable intermediate states are only virtually populated, and
the magnon transfer efficiency from A to B can approach
unity, in spite of resonator loss.

The transfer from A to B is accomplished by turning
on the laser beam g, ramping up the beam €2, and
subsequently ramping down Qp (see figure 1(a)). If both
beams are extinguished simultaneously when the magnon is
found with equal probability in either of the two ensembles
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Figure 1. (a) Set-up for phase-coherent optical transfer of a single spin-wave quantum (magnon) between two ensembles and entanglement
generation. Two ensembles, A and B, are defined within a cloud of laser-cooled cesium atoms by two laser beams. A single magnon
generated in ensemble A by the detection of a single photon is transferred via a dark state of the resonator to ensemble B. (b) Adiabatic
transfer in a five-level system. The magnon can be transferred between two ensembles by time-dependent control of the laser beams 24, Q2p
addressing the two ensembles. (c) Verification of coherence between the two ensembles. When a single magnon is shared between the two
ensembles, the emission into the optical resonator exhibits an interference fringe, in analogy to superradiant and subradiant emission states

of two atoms [13].

(24 = Q3p), the transfer is interrupted and the system is left
in an entangled state |G ) +€'?|Gg) = [1)4]0)g +€'?|0)o| 1),
where |n)s denotes n magnons in ensemble S=A,B.
The existence of a definite quantum phase ¢ between
the components |1)4|0)g and |0)o|l)g can be tested by
coupling both ensembles simultaneously to the resonator in
an attempt to convert the magnon into a photon that can be
measured directly. As the phase ¢ between the ensembles is
varied, the emission into the resonator exhibits interference
fringes (figure 1(c)) that can be understood as constructive
and destructive interference (superradiance and subradiance)
between the emission processes by the two ensembles [13]. In
combination with the sub-Poissonian character of the stored
single excitations, this interference implies entanglement
between the two ensembles [14].

3. Heralded storage of photon polarization states

For the transport of quantum states between remote locations,
the state stored in one ensemble can be converted into a
photon that is transported via an optical fiber to a distant
location, where it is mapped onto another ensemble. The
transmission will, in practice, be subject to loss, be it due
to fiber losses or to imperfect mapping between the photon
and the quantum memory. To a certain extent, such a loss

can be remedied by a heralding feature where successful
storage is announced without giving away the incoming
quantum state (figure 2(b)). In the case discussed here, a single
photon of fixed polarization announces the successful storage
of a photon of unknown, or even potentially undetermined,
polarization. Such a heralded storage is achieved by means
of a spontaneous Raman process that simultaneously creates
a photon of fixed polarization that serves as the herald,
and a magnon that is a copy of the input-beam polarization
(figure 2(c)). To store an arbitrary polarization state |{) =
cosA|R) +e%sinH|L), written as a superposition of right/left
circularly polarized states |R), |L) with two arbitrary angles
0, ¢, we use two spatially overlapping atomic ensembles A,
B inside an optical resonator. The atomic levels are chosen
such that ensemble A (B) absorbs only |R) (|L)) polarized
light, while both can emit a photon of the same polarization
(7r) into the resonator on the Raman transition of interest
(figure 2(c)). The detection of the emitted 7w photon heralds
the mapping of the input polarization state onto a magnon,
[¥) — |W) =cos@|1)4]0)5 +¢e¥sin@]|0)5|1)5, but does not
provide ‘which-path’ information to distinguish between A
and B. The heralding also ensures that, even if the input
is a coherent beam, only one magnon is generated between
the two ensembles in the limit of small Raman scattering
probability. At a later time, the stored state can be retrieved
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Figure 2. (a) Set-up. The storage of a photon of arbitrary polarization from the write beam is heralded by a photon detected on
single-photon counter D1. Small arrows indicate beam polarization and OP is the optical pumping beam. NPBS, PBS, QWP and HWP
denote a non-polarizing beamsplitter, a polarizing beamsplitter, a quarter-waveplate and a half waveplate, respectively. D2 and D3 are
single-photon counting modules used for polarization analysis of the stored photon. A static magnetic field induces magnon precession.
(b) Principle of heralded polarization storage. A heralding photon of fixed polarization announces the storage of a photon of unknown, and
potentially undetermined, polarization. (c) Energy levels. Ensembles A and B are initially prepared in hyperfine and magnetic sublevels

lg+) =

|F =3, mp = F3). The write (green) and the read (red) processes are o *—m and m—o*
g p

spontaneous Raman transitions, respectively.

Detection of the 7 -polarized photon announces storage. (d) Quantum state tomography of the stored photon. Measured density matrix
elements for different photon polarization states. The polarization fidelity for all of the stored states exceeds 90%.

on demand as a single photon by utilizing the strong coupling
of the magnon to the resonator mode [1, 12].

The heralded storage occurs rarely (p~ 107% per
incident photon in our non-optimized set-up), but when it
does, the incident photon is stored and can later be recreated
with good efficiency (¢ ~ 50%) and sub-Poissonian statistics
(g2 ~ 0.24), while its polarization state is restored with very
high fidelity (F > 90%). The fidelity of the stored state is
measured by converting the stored magnon into a photon,
and performing quantum state tomography. Figure 2(d) shows
the reconstructed density matrix for three different input
polarizations [15].

It should be possible to significantly increase the storage
probability to a few percent by increasing the resonator finesse
from the current low value F ~300 to F ~ 10*. Then it
would be possible to use the current system for the storage
of incoming single photons or entangled photon pairs, as,
for example, produced by a parametric downconverter. The
storage of such pairs would then enable the heralded or
deterministic generation of entangled photon pairs.
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