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In this supplement, we begin in Sec. I by reviewing the description—previously derived by Murch et al. in Ref.
[1]—of a trapped atomic ensemble as a single-mode mechanical oscillator coupled to the cavity. In Secs. II A-IID,
we calculate the spectrum of intensity fluctuations at the output of the symmetric optical cavity, and we relate this
spectrum to the spectrum of position fluctuations of the mechanical oscillator itself. We closely follow the approach of
Marquardt et al. [2] for calculating the displacement spectrum of the mechanical oscillator, and we additionally include
lowest-order effects of laser phase noise [3]. After accounting in Sec. II E for technical effects in our photodetection of
the cavity transmission, we derive in Sec. II F the relation of measured photocurrent fluctuations to the occupation
〈n〉 of the collective mode. Our calibration of atom number is described in Sec. III. Finally, in Sec. IV we describe a
measurement of the thermodynamic temperature associated with all N modes of the ensemble’s axial motion.

I. HAMILTONIAN AND COLLECTIVE MODE

We first consider the Hamiltonian Hsys of an ensemble of N atoms that are harmonically trapped, with identical
trap frequencies ωt, at various positions ξi along the cavity axis. For dispersive coupling of the atoms to a cavity
mode (“probe” mode) of frequency ω0 with annihilation operator â, we have

Hsys =
N
∑

i=1

[

1

2
mω2

t (x̂i − ξi)
2 +

p̂2i
2m

+ h̄Ω sin2(kx̂i)â
†â

]

+ h̄ω0â
†â. (1)

Here, the atom-probe interaction is quantified by Ω = g2/∆, in terms of the vacuum Rabi frequency 2g and detuning
∆ ≫ Γ of the probe mode from the atomic resonance with linewidth Γ. In the Lamb-Dicke regime, where the
motion x̃i ≡ x̂i − ξi ≪ k−1 of each atom in its trap is small compared to the probe wavelength, the optomechanical

interaction term can be expressed in terms of a single position variable X̂ ≡ N−1
∑N

i=1 sin(2kξi)x̃i corresponding to

the collective mode C discussed in the main text. The momentum conjugate to X̂ is expressed in terms of the single-

atom momenta p̂i as P = N
∑N

i=1 sin(2kξi)p̂i/
∑N

i=1 sin
2(2kξi), such that X̂ and P̂ obey the canonical commutation

relation [X̂, P̂ ] = ih̄. To describe the full motion of the N -atom ensemble, one can construct an orthogonal basis

comprising X̂, P̂ , and additional coordinate pairs representing 3N − 1 other modes of ensemble motion with energy
H⊥; in this basis, the system Hamiltonian becomes

Hsys =
1

2
Mω2

t X̂
2 +

P̂ 2

2M
+ h̄

(

ω0 + δωN + GX̂
)

â†â+H⊥, (2)

where M = mN2/
∑N

i=1 sin
2(2kξi) represents the effective mass of the collective mode, δωN = Ω

∑N
i=1 sin

2(kξi) is
an overall shift of the cavity resonance due to the atoms, and G = NΩk is the change in this cavity shift per unit
displacement of the collective mode.
In Eq. 2, the collective mode is entirely decoupled from all other ensemble modes due to our approximation of

perfectly harmonic and homogeneous trapping. We allow for corrections to this simplified model by introducing a
term Hγm

representing coupling of the collective mode to a bath, which, in addition to including effects of mixing
with other axial modes, might include effects of radial motion or light-induced effects beyond the optomechanical
interaction included in Hsys. Further accounting for a coupling Hκ of the intracavity field to input field modes with
energy Hdrive, the full optomechanical Hamiltonian takes the form

Htot = h̄
[

ω0 + δωN + GX0(ĉ
† + ĉ)

] (

â†â−
〈

â†â
〉)

+ h̄ωtĉ
†ĉ+Hdrive +Hκ +Hγm

, (3)

where we have subtracted an offset associated with the average intracavity light level and absorbed the associated
force on the atoms into a redefinition of the trap centers ξi. In terms of the zero-point length X0 ≡

√

h̄/(2Mωt), the

annihilation operator ĉ for mode C has the usual definition such that X̂ = X0(ĉ
† + ĉ) and P̂ = iMωtX0(ĉ

† − ĉ).
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II. MECHANICAL MOTION AND TRANSMISSION FLUCTUATIONS

A. Equations of Motion

Equation 3 is the standard optomechanical Hamiltonian [2, 4] describing a cavity mode, with operator â, whose
frequency is shifted in proportion to the position X0(ĉ

† + ĉ) of a mechanical oscillator of frequency ωt. The last three
terms in Eq. 3 can be written out explicitly using the standard input-output formalism of quantum optics [5, 6]. One
thereby derives equations of motion for â and ĉ in terms of the optical input operators âinj , corresponding to the
fields driving the cavity from its two ends labeled by j ∈ 1, 2, and a mechanical input operator ĉin corresponding to
the thermal bath. We shall describe the evolution of the field operators in a rotating frame at the drive frequency ωL,

writing the intracavity field operator â = (a+ d̂)e−iωLt in terms of a c-number a and a noise operator d̂ that accounts

for small deviations from the classical value, and similarly letting âinj = (ainj + d̂inj)e
−iωLt. The classical field values

are then in a steady-state relation

0 = (iδ − κ

2
)a−

√

κ

2
(ain1 + ain2) , (4)

while the deviations obey the linearized equations of motion [2]

˙̂
d = (iδ − κ

2
)d̂+ iα

(

ĉ+ ĉ†
)

−
√

κ

2

(

d̂in1 + d̂in2

)

, (5)

˙̂c = (−iωt −
γm
2

)ĉ−√
γmĉin + i

(

α∗d̂+ αd̂†
)

, (6)

where δ ≡ ωL−(ω0+δωN) represents the detuning of the drive field from cavity resonance for X = 0; and α ≡ −GX0a.
Defining the cavity response function χκ(ω) = 1/[κ/2− i(ω + δ)] and the mechanical response function χm(ω) =

1/[γm/2− i(ω − ωt)], and rewriting the equations of motion in the Fourier domain, we have:

d̃/χκ(ω) = iα[c̃(ω) + c̃†(−ω)]−
√

κ

2
[d̃in1(ω) + d̃in2(ω)], (7)

c̃/χm(ω) = i[α∗d̃(ω) + αd̃†(−ω)]−√
γmc̃in(ω). (8)

Here, Õ(ω) ≡
∫ T/2

−T/2 e
iωtO(t) dt/

√
T denotes the windowed Fourier transform [6] of an operator O, and in calculating

spectra
〈

Õ(ω)Õ(−ω)
〉

(for Hermitian O) we shall always implicitly take the limit T → ∞ of a long window.

We can solve Eqs. 7-8 to obtain the dependence of X̃(ω)/X0 = c̃(ω) + c̃†(−ω) on the optical input fluctuations

d̂in = (d̂in1 + d̂in2)/
√
2 and the mechanical bath operator ĉin:

c̃(ω) + c̃†(−ω) =
−√

γm[χ−1∗
m (−ω)c̃in(ω) + χ−1

m (ω)c̃†in(−ω)]− 2
√
κωt

[

α∗χκ(ω)d̃in(ω) + αχ∗
κ(−ω)d̃†in(−ω)

]

N (ω)
, (9)

where

N (ω) = χ−1
m (ω)χ−1∗

m (−ω)− 2i |α|2 ωtΠ(ω) (10)

and

Π(ω) = χκ(ω)− χ∗
κ(−ω). (11)

B. Input Field

We shall allow one end of the cavity to be driven by a laser at frequency ωL that may have some phase noise. To

account for this, we let d̂in1 = d̂in0 + iβain1, where d̂in0 represents quantum fluctuations, while β(t) ≪ 1 is a real-
valued stochastic variable representing the phase noise. At the other end of the cavity, we will admit only vacuum
fluctuations (setting ain2 = 0).
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The quantum fluctuations (j = 0, 2) satisfy
〈

d̃†inj(ω)d̃inj(ω
′)
〉

= 0,
〈

d̃inj(ω)d̃
†
inj(ω

′)
〉

= δT (ω − ω′), (12)

where in the relevant limit T → ∞, δT (0) = 1 and δT (u) → 0 for u 6= 0. Phase noise modifies the corresponding

relations for d̂in1,
〈

d̃†in1(ω)d̃in1(ω
′)
〉

=
〈

β̃(−ω)β̃(ω′)
〉

|ain1|2 ,
〈

d̃in1(ω)d̃
†
in1(ω

′)
〉

= δT (ω − ω′) +
〈

β̃(ω)β̃(−ω′)
〉

|ain1|2 , (13)

and adds correlations
〈

d̃in1(ω)d̃in1(−ω′)
〉

= −
〈

β̃(ω)β̃(−ω′)
〉

a2in1. (14)

We will parameterize the laser noise by an effective linewidth γL(ω) given by the two-sided spectral density of frequency

fluctuations, γL(ω) ≡ ω2
〈

β̃(ω)β̃(−ω)
〉

. (For a laser with Lorentzian lineshape, γL is independent of frequency and

represents the full width [7].)

C. Transmission Spectrum

We now proceed to calculate the two-sided spectrum S
(2)
R (ω) of cavity transmission fluctuations and relate this to

the spectrum of the mechanical oscillator’s motion. The rate R at which photons are transmitted from the cavity is

given in terms of the output field operator âout = âin2 +
√

κ
2 â as R = â†outâout. The fluctuations of this rate about its

mean value R = a2out are given by â†outâout− a2out ≈ (a∗outd̂out+ ad̂†out), where d̂out = âout− aout and we are working to

lowest order in d̂out/aout. We assume, without loss of generality, that a is real. Defining ǫ(ω) ≡ d̃out(ω)+ d̃†out(−ω), we

then have S
(2)
R (ω)/R = 〈ǫ(ω)ǫ(−ω)〉. Using Eq. 7 to evaluate d̃out = d̃in2 +

√

κ/2d̃, we find ǫ(ω) = ǫopt(ω)+ ǫmech(ω),
where

ǫopt(ω) =− (κ/2)
[

χκ(ω)d̃in1(ω) + χ∗
κ(−ω)d̃†in1(−ω)

]

+ [1− (κ/2)χκ(ω)] d̃in2(ω) + [1− (κ/2)χ∗
κ(−ω)] d̂†in2(−ω) (15)

and

ǫmech(ω) = iα
√

κ/2Π(ω)
[

c̃(ω) + c̃†(−ω)
]

. (16)

Here, ǫopt contains the intensity fluctuations due to photon shot noise or technical noise of the drive light, whereas
ǫmech describes fluctuations in transmission due to atom-induced shifts of the cavity resonance.
Using Eqs. 15 and 16, we can express the fractional fluctuations in transmitted intensity as the sum of three

terms describing, respectively, the intrinsic optical fluctuations; the motion-induced fluctuations; and the correlations
between the first two:

S
(2)
R (ω)/R

2
= S

(2)
opt(ω) + S

(2)
mech(ω) + S

(2)
fb (ω). (17)

Here,

S
(2)
opt(ω) = 〈ǫopt(ω)ǫopt(−ω)〉 /R = 1/R+ γL(ω) |Π(ω)|2 (18)

represents the optical fluctuations that would be present even in the absence of optomechanical coupling, namely

photon shot noise and laser phase noise (converted into intensity noise by the cavity). S
(2)
mech(ω) is directly related to

the spectrum S
(2)
X (ω) =

〈

X̃(ω)X̃(−ω)
〉

of the mechanical motion (evaluated below in Eq. 21) by

S
(2)
mech(ω) = 〈ǫmech(ω)ǫmech(−ω)〉 /R = G2 |Π(ω)|2 S(2)

X (ω). (19)

Finally, the correlations between the mechanical motion and the optical noise are described by

S
(2)
fb (ω) = 〈ǫopt(ω)ǫmech(−ω) + ǫmech(ω)ǫopt(−ω)〉 /R

= −4(GX0)
2ωtIm

[

Π(ω)

N (ω)

(

χ∗
κ(ω) + 2γL(ω) |Π(ω)|2 R/κ

)

]

. (20)
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D. Displacement Spectrum

We evaluate the two-sided spectrum of the mechanical oscillator’s displacement S
(2)
X (ω) =

〈

X̃(ω)X̃(−ω)
〉

using Eq.

9. Applying the simplest possible model for the bath, namely quantum white noise [8] with
〈

c̃†in(ω)c̃in(ω)
〉

≡ 〈nbath〉,
we obtain

S
(2)
X (ω)/X2

0 =
γm

[

(〈nbath〉+ 1)
∣

∣χ−1
m (−ω)

∣

∣

2
+ 〈nbath〉

∣

∣χ−1
m (ω)

∣

∣

2
]

+ 4κ |ωtαχκ(ω)|2 + 8[γL(ω)R/κ] |ωtαΠ(ω)|2

|N (ω)|2
. (21)

The first pair of terms (in square brackets) describes motion arising from the oscillator’s coupling to the bath. The
middle term describes motion induced by photon shot noise of the probe light, while the last term describes motion
induced by laser frequency noise.

Note that in the absence of optomechanical coupling (α = 0), the oscillator spectrum S
(2)
X (ω) reduces to a pair of

Lorentzians centered about ±ωt

S
(2)
X (ω)

X2
0

∣

∣

∣

∣

∣

α=0

= γm

[

(〈nbath〉+ 1) |χm(ω)|2 + 〈nbath〉 |χm(−ω)|2
]

, (22)

whose area is set by the bath temperature

∫ ∞

−∞

dω

2π

S
(2)
X (ω)

X2
0

= 2 〈nbath〉+ 1. (23)

E. Comparison with Measured Spectra

The spectra we measure are one-sided spectra, which we shall denote generically in terms of the two-sided spectra
S(2)(ω) by S(ω) ≡ S(2)(ω) + S(2)(−ω). The actual noise measured at the photodetector, normalized to the average

photocurrent I, is SI(ω)/I
2
= SR(ω)/R

2
+ Σdet. Here, Σdet accounts for imperfect quantum efficiency Q = 0.5(1),

an excess noise factor F = 4.5(5) of the avalanche photodiode, and dark (primarily Johnson) noise, and is given by

Σdet =
F −Q

Q

2

R
+

SJ

(QR)2
, (24)

where SJ = 1.5(3)×109 /(s2 Hz) expresses the measured dark noise in units of equivalent photon rate. The spectra in
Fig. 4 are taken with a photon rate R = 1.2×109/s at the output of the cavity, which yields Σdet = 1.6(1)×10−8/Hz.

We can now write the measured spectrum as SI(ω)/I
2
= Smech(ω) + Sbg(ω), where

Sbg(ω) = Sopt(ω) + Sfb(ω) + Σdet. (25)

From transmission noise Sopt(ω) measured at large photon rate in the absence of atoms, we have determined the
effective laser linewidth to be γL(ωt) = 2π × 0.8(2) kHz at the trap frequency ωt ≈ 2π × 500 kHz (well within our 3
MHz lock bandwidth). At the photon rate R = 1.2× 109/s used in the spectra of Fig. 4, the associated phase-noise-
induced intensity fluctuations are a factor of 1.7(5) below the photon shot noise level; correspondingly, they induce
motion (included in our analysis) that is smaller than the zero-point fluctuations X0.
In fitting the measured spectra, we constrain F , Q, γL and R; we leave the dominant background noise contribution

SJ free and obtain values consistent with the independently measured dark noise.

F. Determination of Collective Temperature

Subtracting the background level Sbg(ω) from the measured spectrum SI(ω)/I
2
allows us to determine SX(ω) from

Eq. 21 and integrate it to find the occupation of the collective mode:

〈n〉+ 1/2 =
1

2

∫ ∞

0

dω

2π
SX(ω)/X2

0 . (26)
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To determine 〈n〉 in Fig. 2, we use not the spectrum itself but the fractional variance σ2
I ≡ (I − I)2/I

2
of the

measured photocurrent I ∝ R in a bandwidth B ≫ ωt, which is related to the spectrum SI(ω)/I
2
by

σ2
I =

∫ B

0

dω

2π
SI(ω)/I

2 ≈
∫ ∞

0

dω

2π
Smech(ω) +

∫ B

0

dω

2π
Sbg(ω). (27)

We make in Eq. 19 for Smech(ω) the approximation Π(ω) ≈ Π(ωt) = (2/κ)(L+ − L−), which yields

Smech(ω) ≈ (2G/κ)2 |L+ − L−|2 SX(ω). (28)

Integrating Eq. 28 allows us to obtain
∫

dω
2πSX(ω) from σ2

I using Eq. 27. The background noise term
∫ B

0
dω
2πSbg(ω)

on the right-hand side of Eq. 27 is independent of the occupation of the collective mode and is well approximated
for the data in Fig. 2 by the variance σ2

I,eq measured in the long-time limit. In particular, we can find the change

〈n〉 − 〈n〉eq in collective mode occupation between two different measurements σ2
I , σ

2
I,eq of the fractional transmission

variance at fixed background noise by combining Eqs. 26-28:

σ2
I − σ2

I,eq = 8(GX0/κ)
2 |L+ − L−|2

(

〈n〉 − 〈n〉eq
)

. (29)

The equilibrium occupation 〈n〉eq <∼ 3 of the collective mode C is small compared to the values 〈n〉 plotted in Fig. 2,

where mode C is initially excited. Therefore neglecting 〈n〉eq ≪ 〈n〉, and reexpressing Eq. 29 in terms of transmission

rate variances σ2 ≡ (R −R)2/R
2
= σ2

I −BΣdet and σ2
bg ≡ σ2

I,eq −BΣdet, we obtain

σ2 − σ2
bg = 8(GX0/κ)

2 |L+ − L−|2 〈n〉 . (30)

III. ATOM NUMBER CALIBRATION

We measure atom number [9] via the cavity shift δωN = NCΩ, where C = N−1
∑N

i=1 sin
2(kξi). Allowing for the

small but non-zero radial cloud size σr = 7(1) µm ≪ w, N represents an effective number of on-axis atoms. The
cloud is long (≈ 1 mm) compared to the 5-µm beat length between trap and probe, so that C = 1/2 in the absence
of probe light. Displacement of the atoms by the probe light reduces C by at most 12% in our experiments, and we
account for this effect.

IV. THERMODYNAMIC TEMPERATURE

The thermodynamic axial temperature, given by the mean single-atom vibrational occupation number 〈ni〉, is of
interest for comparison with the bath temperature inferred from the fits in Fig. 4. We estimate 〈ni〉, in an ensemble
of N = 1000(100) atoms, by ramping off the trap over 20 µs ≫ 1/ωt while increasing the lattice depth of the probe
to Up ≈ 90h̄ωt. In the probe lattice, blue-detuned by ∆ = +280 MHz from atomic resonance, axially cold atoms
localize at positions x′

i near the nodes. Before the cloud has time to expand radially, we determine the atom-probe
coupling C′ =

〈

sin2(kx′
i)
〉

via the cavity shift, normalized by the shift measured beforehand in the 851-nm lattice at

C = 1/2. From C′ ≈ (〈n′
i〉 + 1/2)

√

Er/Up we determine the mean vibrational level 〈n′
i(0)〉 = 6(2) in the final probe

lattice. Note that this measurement provides only an upper bound on 〈ni〉 ≤ 〈n′
i〉 if the transfer into the deep probe

lattice is not entirely adiabatic.
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