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S1. MATERIALS AND METHODS

A. Atom loading and preparation

The 87Rb atoms are loaded from a 3D magneto-optical trap (MOT) into a 1064 nm crossed

dipole trap. The dipole trap is modulated with a period of 40 µs and 80 % duty cycle. A ⇠ 6 µs

long probe pulse is sent to the atomic cloud while the dipole trap is o↵ to avoid inhomogeneous

AC Stark shift and the anti-trapping of the Rydberg atoms. The modulation of the trap and

therefore the measurements last for 120 ms before a new atomic cloud is loaded. The average

resonant optical depth along the atomic cloud is 36. The root-mean-square (RMS) length of the

medium is �ax = 32 µm. The atoms are optically pumped into the hyperfine (F ) and magnetic

(mF ) sublevel |gi = |5S1/2, F = 2, mF = 2i. The weak coherent probe light is coupled to the

Rydberg state, via an intermediate state |ei = |5P3/2, F = 3, mF = 3i, of linewidth �/2⇡ = 6.1

MHz, by means of a counter-propagating control field that is detuned by � below the resonance

frequency of the upper transition, |ei ! |ri = |100S1/2, mJ = 1/2i, in the presence of a 3

G magnetic field along the long axis of the cloud. Probe and control counter-propagate along

the quantization axis. The blockade radius rB defined as
⇣
C6

2|�|
⌦2

c

⌘ 1
6

is 20 µm, where C6/~
= 2⇡ ⇥ 56.4 THz·(µm6) is the van der Waals coe�cient and � = 30 MHz is the one-photon

detuning.

B. Correlation and phase measurement setup

In Fig. 1A of the main text, the first two beamsplitters are polarizing beamsplitters (PBS),

and the last one is a 8:92 pellicle beamsplitter to minimize loss of the probe photons. There are
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polarization optics (not shown in the figure) before the first PBS to clean up the polarization

of the probe, after which a half-wave plate is placed before each PBS to balance the detection

rates on the three detectors.

We obtain the phase by performing a heterodyne measurement by mixing the transmitted

probe light with a local oscillator (LO) at detector D3 as shown in Fig. 1A. The LO is blue

detuned by 79 MHz from the probe laser and this frequency di↵erence is generated by an acousto-

optic modulator (AOM). Afterwards, the two beams are sent through their own optical fibers.

In order to take out the phase fluctuations caused by the fibers, we interfere the probe and LO,

and trigger the single-photon detectors with the beatnote, which serves as a time zero for each

probe pulse. Unlike the probe, the LO does not propagate through the atomic cloud, causing an

additional phase drift on a time scale of tens of milliseconds. We keep track of the overall phase

drift by fitting the unconditional phase for each time interval of ⇠ 10 ms. The interpolation of

this time-dependent unconditional phase is added to each detection event on detector D3 (phase

measurement) to enable averaging over hours for the conditional phase measurements. Since we

only detect one output port of the pellicle beamsplitter, the intensity noise cannot be canceled

as in a balanced detection. Therefore, the LO counts is kept about four times of that of the

probe on detector D3.

To produce the unconditional phase measurement in Fig. 1C of the main text, we modulate

probe-dipole trap for 5 ms. The sequence is adjusted such that during this 5 ms measurement

time, the average optical depth is the same as a usual sequence. After that, we shut o↵ the

dipole trap and allow the atomic cloud to expand for 1 ms. We then measure the unconditional

phase for 4 ms and use it as the phase reference.

The rate-dependent �(1) in Fig. 1D of the main text is generated by alternating relatively

strong and weak (input photon rate of 0.5 µs�1) pulses. The weak pulse serves as the phase

reference, and a constant o↵set is applied to all the points such that the linear fit crosses the

origin.

By conditioning on detecting two probe photons at time t1 and t2, and performing a phase

measurement at time t3, we directly measure �̃(3)(t1, t2, t3)� �̃
(2)(t1, t2)� �̃

(3)
ref . From the same

data, by conditioning on detecting one probe photon, we obtain �̃
(2)(t1, t2) � �̃

(1)(t1) � �̃
(2)
ref ,

where �̃(N)
ref denotes the phase reference of the directly measured phase conditioning on detecting

N-1 probe photons. We can use the local unconditional phase when the phase measurement is

performed as the reference, as in Fig. S1, namely, �̃(3)
ref = �̃

(1)(t3) and �̃
(2)
ref = �̃

(1)(t2). For

uncorrelated photons, N-photon phase can be written as the sum of the one-photon phase,

e.g. �̃
(3)(t1, t2, t3)

|ti�tj |!1,8i 6=j
�����������! �̃

(1)(t1) + �̃
(1)(t2) + �̃

(1)(t3). Therefore, at large |⌧ |, both

conditional phases in Fig. S1 are expected to go to 0. However, there is small disagreement

between the unconditional and the conditional phase with well separated photons. The condi-

tional phases vary at a time scale of a few tens of microseconds, much slower than the bound

state physics. Additionally, the mismatch is only less than 20 % of the phase of the concurrent

photons. Therefore, we do not believe the phase o↵set at large ⌧ to have significant impact on
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our main results.

In the main text, on the other hand, we use its own average value when the two photons

are far away from each other as the phase reference �̃
(2)
ref . �̃

(3)
ref includes both the phase of

the uncorrelated photons and the phase conditioning on detecting one probe photon, namely,

�̃
(3)
ref = �̃

(1)(t3)� (�̃(2)(t1, t2)� �̃(1)(t1)� �̃
(2)
ref ). Assuming all detectors are interchangeable, this

leads to �̃(3)(t1, t2, t3)� (�̃(1)(t1)+ �̃
(1)(t2)+ �̃

(1)(t3)), defined as �(3)(t1, t2, t3) in the main text.

C. Ab initio calculation of the initial slope of the correlation functions

We independently measure OD, the control Rabi frequency ⌦c, the one-photon detuning �,

the root-mean-square length of the medium �ax and the group delay (the propagation time of

the photon in the medium). The blockade radius rB is calculated from the measured ⌦c, �

and the known C6 coe�cient. The optical depth per blockade radius ODB is calculated from

the measured OD and RMS length of the cloud �ax assuming a Gaussian atomic density profile.

The population decay rate � is taken from the known natural linewidth. The group velocity vg

is calculated from the measured group delay and �ax. We then use these quantities to calculate

the scattering length and ⌧2,3.

S2. SUPPLEMENTARY TEXT

A. Microscopic Model

These experiments can be understood schematically in terms of the multi-particle transport

problem illustrated in Fig. S2. A coherent state of light is incident on the quantum nonlinear

optical medium formed from Rydberg atoms. Due to the interactions inside the medium, the

output light exhibits multi-photon entanglement and correlations. Developing a full theoretical

description of the transmitted light field is challenging even in the limit of a few-photons because

the photons must be treated as a continuous quantum field. Nevertheless significant simplifica-

tions in the theory are possible due to the large separation of scales between the microscopic

degrees of freedom and the emergent scales present in the correlations of the output light. We

recently developed an e↵ective field theory (EFT) description of this transmission problem by

taking advantage of this large separation of scales [21]. This EFT framework forms the basis of

our theoretical analysis of the three-photon transmission problem studied in this work.

As the starting point for our theory we use a continuum description of the problem which first

coarse grains over the atomic density to define local continuous quantum fields  g(z),  p(z), and

 s(z) for the photons, intermediate atomic excited state, and Rydberg state, respectively. These

operators satisfy bosonic commutation relations [ a(z), †
b(z

0)] = �ab�(z � z
0). In describing the

transmission of the photonic field  g, we integrate out the other transverse propagating photonic
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degrees of freedom to arrive at a master equation description of the problem (~ = 1)

⇢̇ = �i

Z
dz[H0(z) + Hint(z), ⇢] +

�

2

Z
dzD[ p(z)]⇢+

�s

2

Z
dzD[ s(z)]⇢, (S1)

H0(z) =

0

BB@

 g(z)

 p(z)

 s(z)

1

CCA

† 0

BB@

�ic@z g(z) 0

g(z) �� ⌦c/2

0 ⌦c/2 ��

1

CCA

0

BB@

 g(z)

 p(z)

 s(z)

1

CCA , (S2)

Hint =

Z
dz

0
 
†
s(z) †

s(z
0)V (z � z

0) s(z
0) s(z), (S3)

where D[A]⇢ = �{A
†
A, ⇢}+2A⇢A

† is a trace-perserving superoperator, H0 is the non-interacting

Hamiltonian density written in the rotating frame, and Hint is the Rydberg interaction Hamil-

tonian density. The non-interacting theory is parameterized in terms of the control field Rabi

frequency ⌦c, the fullwidth of the intermediate state �, the fullwidth of the Rydberg state �s,

the detuning � = !ps�!c between the control field frequency !c and the Rydberg-intermediate

state transition frequency !ps, and the two-photon detuning � = !p + !c � !gs between the

sum of !c and the input probe frequency !p and the ground to Rydberg state transition fre-

quency !gs. The single-photon Rabi frequency for the probe g(z) is proportional to the square

root of the atomic density n(z), with the proportionality constant determined by the reso-

nant optical depth OD =
R

dz 4 [g(z)]2/�c. We parameterize the density by a Gaussian profile

n(z) / exp(�z
2
/2�2

ax), where �ax is the RMS axial width of the cloud. Finally, we approximate

the Rydberg interactions by their long-range van der Waals tail V (r) = C6/r
6.

An important simplification of this problem is provided for photonic input states with a low

photon rate, where the evolution can be described solely in terms of the dynamics induced by

the e↵ective non-Hermitian Hamiltonian [18]

He↵ = H0 + Hint � i
�

2
 
†
p p � i

�s

2
 
†
s s. (S4)

The decay terms can be incorporated into H0 through the replacements � ! � + i�/2 and

� ! � + i�s/2. This approximation relies on the fact that the corrections to the non-Hermitian

Hamiltonian evolution from the recycling terms in the master equation, i.e., the so-called “quan-

tum jumps,” are suppressed by higher powers of the polariton density in the medium (see

Ref. [36] for a similar argument applied to a cavity model). Since the experiments are operated

in the limit of low polariton densities in the medium, we are justified in neglecting these quantum

jump processes. We present a more detailed discussion of these e↵ects in Sec. S2 E.
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B. E↵ective Field Theory

For su�ciently low-energy scattering of two-particles, the dynamics of the Rydberg polaritons

are described by the renormalized Lagrangian density [22]

L0 =  
†
h
i@t + ivg@z �

1

2m0
@

2
z

i
 µ +

1

m0a
 
†
 
†
  , (S5)

vg =
d✏D(k)

dk

���
k=k0

,
1

m0
=

d
2
✏D(k)

dk2

���
k=k0

, (S6)

where a is the one dimensional scattering length, ✏D(k) is the dispersion relation of the dark-

state polaritons obtained from the non-interacting part of He↵ , vg is the EIT group velocity,

and m0 is the e↵ective mass.

This EFT is exactly solvable in 1D and, for attractive interactions (a > 0), it has one N -body

bound state for every N [25,26]. The properties of the three-body bound state are discussed

in the main text. At low-momenta, the lowest order correction to this theory is given by a

three-body interaction [37]

L = L0 � V3, (S7)

V3 =
h3

36
 
†3
 

3
. (S8)

This term, although irrelevant for low-energy, few-body observables in the scaling limit

(|a| ! 1) [38], has important physical consequences at any finite momentum scale. As discussed

in the main text, we can understand the origin of three-body interactions in the Rydberg-EIT

system at a qualitative level as arising from the physics of Rydberg blockade. When more than

two photons are within a blockade radius from each other, their interaction energy is suppressed

due to the blockade e↵ect. This leads to an e↵ective three-body force with the opposite sign

from the two-body force as was shown in our recent work [21] and Ref. [31]. Although analytic

expressions for the three-body interaction were derived in these works, these derivations ne-

glected non-perturbative e↵ects in the renormalization of the microscopic model. In the section

below, we provide an alternative estimate of the three-body force that fully accounts for these

corrections, but in a simplified version of the microscopic model.

1. Estimating the Three-Body Force

In this section, we outline a procedure to estimate the value of the three-body force in the

EFT by matching its prediction for the dimer-polariton scattering length to a simplified version

of the microscopic model. Here the dimer is the shallow two-body bound state with the binding

energy

ED = �
1

m0a
2
. (S9)

Before proceeding to the three-body problem, we first note that the microscopic two-body prob-

lem can be solved via an e↵ective Schrödinger equation for a particle with mass m0 and two-body
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interactions of the form [6,22]

U(!, r) =
U(!, 0)

1 + r6/r6
b (!)

, (S10)

U(!, 0) ⇡
⌦2

c

2�
� !, (S11)

where r is the relative position of the two photons, ! is the total frequency of the incoming

photons and the approximate inequality for U(!, 0) applies in the experimentally relevant regime

of � � (⌦c, �) � �s. Here we have defined the frequency dependent, complex valued blockade

radius rb(!) = [C6/U(!, 0)]1/6, which is related to the blockade radius rB used in the main text

and defined in Sec. S1 A through the identity rB ⇡ |rb(0)|.

To solve the three-body problem we introduce a simplified description of the full microscopic

problem that is easier to treat analytically and numerically. In particular, we replace the e↵ec-

tive interaction potential U(!, r)�(r � r
0) in the integral equations for the two and three-body

scattering amplitudes by a non-local, so-called “separable” potential

U(!, r, r
0) = u0(!)u(r)u(r0), (S12)

u0(!) =

Z
drU(!, r) =

2⇡

3
U(!, 0)rb(!). (S13)

Here r (r0) are the relative positions of the two incoming (outgoing) particles in the scattering

process. Note that U(!, r, r
0) is not to be confused with U(r, r0) defined in Fig. 4(a) of the

main text. In our calculations, we take a square well potential in momentum space, i.e., u(r) =

⇤ sinc(⇡⇤r) with ⇤ ⇠ 1/rB chosen to match the microscopic two-body scattering length a. The

separable approximation allows the two-body T -matrix to be analytically solved and leads to

several key simplifications in the implementation of numerical solutions of the Faddeev equations

for the three-body scattering amplitudes of Rydberg polaritons.

To fix the value of h3 we match the dimer-polariton scattering length (obtained numerically)

in the EFT to that of the simplified microscopic model. To regularize UV divergences in our

solution of the EFT in Eq. (S7), we also take a separable form for the e↵ective two and three-

body interactions

V2(r, r
0) =

2

m0a
v(r)v(r0), (S14)

V3(r, r0) = h3v(r1)v(r2)v(r01)v(r02), (S15)

where r (r0) are the relative coordinate of the two incoming (outgoing) polaritons. For the

three-body case, we use the convention that for an incoming polariton with coordinate z1 and

an incoming dimer with coordinates (z2, z3), r1 = z1 � z2 and r2 = z1 � z3 and similarly for

the outgoing coordinates. In the EFT we take a square well potential in real space v(r) =

✓(�r � |r|)/2�r with ✓(·) the Heaviside step function. The potential is chosen as a square well

because this is the form we use for the interactions when solving the transmission problem using

the EFT. Defining the interaction parameter ' = ODB�/4� = g
2
rB/c�, we parameterize the

range of the e↵ective potentials as �r = ↵rB/' for ↵ . 1. Since the scattering length in the
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experimentally relevant regime of small ' satisfies a ⇡ rB/'
2 [22], we have �r/a ⇡ ↵' ⌧ 1,

such that these potentials can be well approximated by contact interactions at low-momentum.

To perform the matching, we fix h3m0 = �'
2 for some choice of � and then adjust the range

of the potential via ↵ to match the scattering amplitudes. For Fig. 4 in the main text we chose

� = 13.5 near the value obtained from our previous analytic predictions for the three-body force

[21,31]. Performing the matching calculation we found ↵ ⇡ 0.1 for the experimentally relevant

range of '. Although the precise choice of matching procedure is somewhat arbitrary, what is

important is that the physical observables are independent of these details. We have verified

that the predicted values of the ratio �3(0, 0)/�2(0) from the EFT vary by less than 5 % when

the choice of �, with ↵ obtained from matching, is varied within 50 %.

2. Comparison Between EFT, Numerical Simulations, and Experimental Data

To solve the transmission problem we use a modified version of the EFT that takes into

account the spatial inhomogeneity of the atomic density. Most notably, we use a local density

approximation (i.e., each parameter is defined in terms of the local value of g(z)) and transform

into a moving frame through the coordinate transformation [21]

z̄ = t �

Z z

0
dz

0 1

vg(z0)
, (S16)

⌧ = z, (S17)

which transforms the Lagrangian to the form

L =  
†
h
ivg(⌧)@⌧ �

@
2
z̄

2m0(⌧)v2
g(⌧)

i
 +

 
†2
 

2

m0(⌧)a(⌧)vg(⌧)
�

h3(⌧)

36 v2
g(⌧)

 
†3
 

3
, (S18)

where we have rescaled the field  (z) !  (z̄)/
p

vg(⌧) such that [ (z̄), †(z̄)] = �(z̄ � z̄
0) and

we have neglected higher-order derivatives involving @⌧ as their e↵ect is suppressed due to

the presence of the linear time derivative. This EFT is a more convenient formulation of the

transmission problem because the parameters now depend on “time” ⌧ , which only appears with

a single derivative. As a result, this theory can be solved by treating it as a time-dependent

Hamiltonian problem. Furthermore, it illustrates that the transmission through the medium

can be mapped to a quantum quench, where the duration of the time evolution following the

quench is given by the EIT group delay ⌧d =
R

dz
1

vg(z) [6,21,39]. When numerically solving for

the transmission using Eq. (S18), we regularize the two and three-body contact interactions by

taking symmetrized, local and non-separable square well interaction potentials

V2(z̄i, z̄j) =
2

m0a
v(z̄i � z̄j), (S19)

V3(z̄1, z̄2, z̄3) =
h3

3

⇥
v(z̄1 � z̄2)v(z̄1 � z̄3) + v(z̄1 � z̄2)v(z̄2 � z̄3) + v(z̄1 � z̄3)v(z̄2 � z̄3)

⇤
, (S20)

where v(r) = ✓(�r � |r|)/2�r, h3 = �'
2
/m0, �r = ↵rB/' and ↵ and � were determined via

the matching procedure for separable potentials described in the previous section. In contrast
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to the separable potentials defined in Eq. (S14)-(S15), here we have suppressed the dependence

on the outgoing coordinates as, due to the locality assumption, the outgoing coordinates are

constrained to be equal to the incoming coordinates.

In Fig. S3(a-b) we compare the predictions from numerical solutions of Eq. (S18) for the trans-

mission through a finite medium to full numerical simulations that account for the microscopic

form of the Rydberg interactions [40]. We see good agreement between the numerics and the

EFT at intermediate times. The deviations at short times are due to the breakdown of the low-

energy assumption and the deviations at long times arise from the finite length of the medium

[21]. We use the initial condition outside the medium of a uniform state with unit amplitude.

We find that including the three-body interaction improves the agreement with �3(t, 0) at inter-

mediate times. Similar to Fig. 3 in the main text, we see that including the three-photon force

reduces the ratio �3(0, 0)/�2(0), where �2(t) is the two-photon phase. Table S1 shows the ratio

�3(0, 0)/�2(0) for the three di↵erent models, where we see that including the three-body force

is able to account for the deviation of this ratio below 3. Despite the disagreement between the

values of �3(t, 0) in the simulations and the EFT at short times seen in Fig. S3, we find that the

ratio �3(t, 0)/�2(t) is roughly independent of t near the origin, which justifies the comparison.

In Table S2 we compare the theoretical predictions from the EFT and the simulations

against the measured values of �3(0, 0)/�2(0) from Fig. 4 in the main text. Here h'i =

⌧
�1
d

R
dz'(z)/vg(z) is the average value of '(z) = ODB�/4� = g

2(z)rB/c� weighted by the

time spent in each region. As mentioned in the main text, we fit the two-photon detuning �

within the experimental uncertainty �/2⇡ = 0.0 ± 0.5 MHz by matching the measured value of

�2(0) to the simulations. All other parameters are determined from independent measurements

without fitting. Although �2(0) and �3(0, 0) are sensitive to the precise value of �, we find

that the theoretical prediction for the ratio �3(0, 0)/�2(0) varies by less than 5 % when varying

� within the experimental uncertainty. We see that the EFT with the three-body force gives

good agreement with both the data and the simulations, while we can clearly rule out the EFT

without the three-body force.

C. Formation of N-Body Bound States

In this section we present a general argument that the propagation through the medium leads

to the formation of an N -body bound state near zero time delay between the polaritons. We first

consider the two-body problem in a uniform medium. Defining the center of mass R = (z1+z2)/2

and relative r = z1 � z2 coordinates for the two polaritons, we expand the wavefunction in the

eigenbasis of the EFT given in Eq. (S5) [6]

 (t, R, r) = cbe
�|r|/a�iEDt +

Z 1

0

dq

2⇡
cq q(r)e

�iq2t/m0 , (S21)

where the first term is the dimer wavefunction,  q(r) = (eiq|r|+bqe
�iq|r|)/

p
2 is the wavefunction

for the two-body scattering states, bq = (iaq + 1)/(iaq � 1), and we work in the center of mass
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frame so that @R = 0. The coe�cients cb and cq are determined by initial conditions.

For a long medium, we can find the transmission analytically for |r|/a ⌧

p
|EDt| using a

saddle point expansion

 (t, R, r) ⇡ cbe
�|r|/a�iEDt + O(|EDt|

�1/2), (S22)

where the second term is due to the contribution from scattering states. Additionally, ED has

an imaginary contribution due to inelastic scattering from the intermediate state. In the limit

of small ', we can find the inelastic part of the scattering length by analytically continuing the

relation,

1

ma
=
⇡

3

⌦2
crB

2�
, (S23)

to imaginary �. This allows us to compute the decay rate of the bound state as

�D ⇡ |ED|�/2�. (S24)

Thus, in order for the bound state to dominate the transmitted light (for which t = ⌧d the EIT

group delay defined in Sec. S2B 2), we require

e
�⌧d�D � 1/

p
|ED|⌧d, (S25)

which is automatically satisfied whenever

1 � ⌧d|ED|
�

2�
�

�

2�
. (S26)

The first inequality arises from the condition that the bound state does not undergo substantial

exponential decay during transmission, while the second inequality follows from the condition

that the contribution from the scattering states is small.

To see how this argument generalizes to N > 2, we move to a relative coordinate system

r1, . . . , rN�1 (defined as any set of coordinates orthogonal to the center of mass coordinate

R =
P

i zi/N). The general form for the evolution in the center of mass frame is given by

 (t, R, r) = cb b(r)e�iEN t +

Z
dq

2⇡
cbq bq(r)e�iEN�1t�iq2t/2m0 + . . . , (S27)

where  b is the wavefunction for the N -body bound state,  bq(r) is the wavefunction for a

combined (N � 1)-body bound state and a scattering state with relative momentum q, etc.

Similar to the two-body problem, we can see that all contributions to  besides  b will dephase

with each other. As a result, the transmission is dominated by the bound state near the origin.

To determine the regime of the current experiment we rewrite the middle term in Eq. (S26)

in terms of known experimental parameters

⌧d|ED|
�

2�
⇡ '

2OD
�2

�2
. (S28)

From these general scaling arguments we see that the dispersive nature of the scattering states

results in the bound state dominating the transmission near the origin in the o↵-resonant, high
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OD limit. For the measurements reported in the main text, the average value of ' along the cloud

was determined to be h'i 2 {0.16, 0.21, 0.28, 0.36, 0.47}, while �/� 2 {0.11, 0.14, 0.2, 0.25, 0.33}

and OD⇡ 34. From these values we see that the first inequality in Eq. (S26) is well satisfied,

which implies that we can neglect the decay of the bound state. On the other hand, the second

inequality is not well satisfied for this OD. This implies that it is necessary to also take into

account the contributions from the scattering states in solving the transmission problem. To

include these contributions, we have performed numerical simulations of the two and three-

photon wavefunction propagation equations derived from the EFT in Eq. (S18) including the

inhomogeneous density profile. In these simulations we are able to increase the length of the

medium (i.e., increase ⌧d only), with other parameters taken from the experiment, to reach the

regime where both inequalities in Eq. (S26) are satisfied. In the transmission through these

artificially long media we observe a strong bunching feature near the origin, which, due to

the arguments presented above, arises from the 3-photon bound state in the EFT. Crucially,

this bunching feature does not change in form as we reduce the length of the medium to the

experimentally relevant value. We conclude, based on this analysis, that the bunching feature

near the origin of the experimentally measured g
(3)(⌧1, ⌧2) is a direct signature of the formation

of a 3-photon bound state in the medium.

D. Finite Rate Corrections to Theory

The correlation functions analyzed above were taken with respect to the vacuum. In the ex-

periment, the input state is a coherent state, which implies that N -particle correlation functions

contain contributions from higher and lower particle-number manifolds. In the limit of a long

coherent state pulse with a finite photon rate R, we now evaluate these corrections perturba-

tively in the normalized polariton density R⌧int. Here ⌧int ⇠ ⌧d is defined as the relative time

di↵erence over which the correlation functions do not factorize. We show that these finite rate

corrections are small, which justifies our approximation of neglecting these corrections when

comparing our theory to experimental data.

We write the input state as

e
↵2/2

|Ei = |0i + ↵|1i +
↵

2

p
2!
|2i +

↵
3

p
3!
|3i + . . . , (S29)

where

|ni =
(a†)n
p

n!
|0i, a

† =
1

p
T

Z
dzE(z) †

g(z). (S30)

Here E(z) is our input mode which we take to be a long uniform pulse of unit amplitude and

duration T from z = 0 to z = T (c=1). We write the output as

e
↵2/2

|Ei = |0i +
p

R

Z
dzE1(z) †

g(z)|0i +
R

2

Z
dz1dz2E2(z1, z2) 

†
g(z1) 

†
g(z2)|0i

+
R

3/2

6

Z
dz1dz2dz3E3(z1, z2, z3) 

†
g(z1) 

†
g(z2) 

†
g(z3)|0i + . . . , (S31)
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where the input photon rate is R = ↵
2
/T and we define gn and �n via

En(z1, . . . , zn) =
p

gn(z1, . . . , zn)ei✓n(z1,...,zn)
. (S32)

Notice that gn and ✓n are di↵erent from the measured g
(n) and �n because of the rate-dependent

corrections. Neglecting dissipation leads to the normalization condition

e
↵2

= e
↵2

hE|Ei = 1 + R

Z
dz1g1(z1) +

R
2

2

Z
dz1z2g2(z1, z2) + . . . , (S33)

which requires the identity

Z
d
n
z[gn(z1, . . . , zn) � 1] = 0. (S34)

One can show that including the decay rates in the e↵ective Hamiltonian gives the leading order

contribution to this integral on the order of (�/�)⌧nint.

These identities allow us to prove that gn converges to g
(n) in the limit of vanishing input

rate R⌧int ! 0. For example, for g2 we find

g
(2)(z1, z2) =

1

R2
hE| 

†
g(z1) 

†
g(z2) g(z2) g(z1)|Ei (S35)

= e
�↵2

[g2(z1, z2)(1 + ↵
2 + . . . ) + R

Z
dz[g3(z1, z2, z) � g2(z1, z2)] + . . . ],

Collecting all terms that are zeroth order in R⌧int, we recover g2(z1, z2). In the limit � � �,

this analysis also gives access to the first order correction in R⌧int, which takes the general form

g
(n)(⌧1, . . . , ⌧n�1) = gn(⌧1, . . . , ⌧n�1)

+ R

Z
d⌧(gn+1(⌧1, . . . , ⌧n�1, ⌧) � gn(⌧1, . . . , ⌧n�1)).

(S36)

For the single-photon phase, we can follow similar arguments to find

1
p

R
hE| g(z)|Ei = e

i✓1 + R

Z
d⌧(

p
g2(⌧)e

i(✓2(⌧)�✓1) � e
i✓1) + O(R2

⌧
2
int), (S37)

and, generalizing to �n,

1

Rn�1/2
hE| 

†
g(z1) · · · 

†
g(zn�1) g(z) g(zn�1) · · · g(z1)|Ei

= E
⇤
n�1(z1, . . . , zn�1)En(z1, . . . , zn�1, z)

+ R

Z
dz

0[E⇤
n(z0, z1, . . . , zn�1)En+1(z

0
, z1, . . . , zn�1, z)

� E
⇤
n�1(z1, . . . , zn�1)En(z1, . . . , zn�1, z)].

(S38)

Using these formulas, we have explicitly evaluated the rate dependent corrections to �2 and

�3 by numerically solving the four-photon transmission problem within the EFT. The results

are shown in Fig. S4. For this data set (�/2⇡ = 30 MHz), the experiments were performed

at a rate near 1 photon/µs. In this regime, the rate dependent corrections to the phase ratio

are on the order of a few percent. This mostly rules out the rate dependent corrections as an
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explanation for the deviation of the phase ratio from three observed in the experiment. We find

similar results for the other data sets. In Fig. 4B of the main text we compare the zero-rate

predictions of the EFT to the experimentally measured values of �3(0, 0)/�2(0). In Fig. 4B of

the main text we compare the zero-rate predictions of the EFT to the experimentally measured

values of �3(0, 0)/�2(0).

E. Dissipative Corrections to Theory

At large single-photon detunings � the dominant decay is due to the finite decoherence rate

�s/2 of the Rydberg state. Experimentally we observe that the single-photon transmission

through the medium is between 50 % and 90 %. Although we include the decay terms in the

non-Hermitian Hamiltonian evolution, this large background decay inside the medium raises the

question of whether we are justified in neglecting the recycling terms in the master equation.

As was argued in Sec. S2A, this approximation is indeed justified at su�ciently low polariton

densities. More precisely, we find the requirement to neglect the recycling terms is given by

�s⌧dR⌧int ⌧ 1. This condition is well satisfied for the experiment even when �s⌧d ⇠ 1, which

justifies our theoretical approach in which we neglect these corrections when comparing to

experimental data.

We do not give a detailed proof of this result here, but note that this scaling can be understood

intuitively because �s⌧d is the expected number of decay events, or “quantum jumps,” per

photon during the transmission through the medium, while R⌧int is the probability of having

a second photon within the interaction range of the first when the quantum jump occurs, i.e.,

the normalized polariton density. Thus, under the condition �s⌧dR⌧int ⌧ 1, the quantum jumps

typically happen when there are no other polaritons nearby with which to interact. In this case,

the interacting correlation functions will have a small contribution from quantum jump events

from higher excitation number manifolds.

The role of quantum jumps associated with other loss processes inside the medium requires

a separate treatment from the Rydberg decay because these e↵ects appear in the polariton

dynamics as momentum or frequency dependent loss (e.g., an imaginary mass term). In this case,

the argument above does not apply because, for a long uniform pulse that has reached steady

state inside the medium, these loss processes are always correlated with interactions between

the polaritons. As a result, these quantum jump events do not average out when evaluating

interacting correlation functions. It is not di�cult to show, however, that these corrections are

suppressed as the product of two small parameters R⌧int and �/�, which justifies our neglect

of these quantum jump processes.
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FIG. S1: The long range behavior of the conditional phase referenced to the local un-

conditional phase. The blue and brown data represent �̃(3)(t, t, t + ⌧) � �̃(2)(t, t) � �̃(1)(t + ⌧) and

�̃(2)(t, t+ ⌧)� �̃(1)(t)� �̃(1)(t+ ⌧), respectively. The inset shows the same quantities at a shorter time

scale. These data with ⌧ much longer the probe pulse (⇠ 6µs) are generated by taking detection events

from di↵erent pulses. Data is the same as in Fig. 3 of the main text.
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Rydberg medium
Control 
fields

ẑ

Decay
Strongly-
correlated light

Classical 
coherent light

FIG. S2: The scheme of the experiment. This experiment can be conceptualized as a multi-particle

transport problem whereby a classical coherent pulse of light enters the medium and becomes strongly-

correlated on the output due to strong coherent and dissipative interactions inside the medium.
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FIG. S3: Comparison between EFT and simulations. We compare the EFT predictions for the

two and three photon transmission through a finite medium (see Ref. [21]) and numerical simulations

for (a) the three-photon phase �3(t, 0) and (b) the three-photon amplitude g(3)(t, 0). Here we took

parameters similar to the current experiments, but with a uniform density profile of length 144 µm, a

resonant OD=68, ⌦c/2⇡ = 5 MHz, � = 30 MHz, �s = 0, and rB = 10 µm.
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�3(0, 0)

�3(0, 0)/�2(0)

FIG. S4: Rate dependent corrections within the EFT. We use parameters from the 30 MHz data

set. The experiment for this data set was performed at a rate of 1 photon/µs.
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Model �3(0, 0)/�2(0)

Simulations 2.90

EFT: No 3-body force 3.13

EFT: 3-body force 2.85± .11

TABLE S1: Comparison of phase ratio between EFT and simulations. Comparison for the

prediction of the phase ratio near zero time delay between di↵erent models for parameters as in Fig. S3.

The uncertainty in the EFT with the three-body force arises from the variations with the choice of

matching conditions for the dimer-polariton scattering length.
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h'i=hODBi�/4� 0.16 0.21 0.28 0.36 0.47

Measured �3(0, 0)/�2(0) 2.17± .18 2.45± .15 2.55± .13 2.33± .27 2.31± .21

EFT: 3-body force 2.64± .18 2.42± .17 2.48± .11 2.60± .11 2.52± .13

Simulations 2.77 2.66 2.72 2.63 2.60

EFT: No 3-body force 3.06 3.05 3.07 3.08 3.06

Fitted � (2⇡·MHz) 0.6 0.6 0 -0.2 -0.4

TABLE S2: Comparison of phase ratio between EFT, simulations and experimental data.

Comparison of measured �3(0, 0)/�2(0) presented in Fig. 4B of the main text to predictions from EFT

with and without the three-body force and the simulations [40]. We took an inhomogeneous Gaussian

density profile with �ax = 32 µm, �s/2⇡ = 200 kHz, � as shown (obtained from fitting the measured

value of �2(0) to the simulations), and other parameters as given in the main text. The uncertainty in

the EFT with the three-body force arises from the variations with the choice of matching conditions for

the dimer-polariton scattering length.
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