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The realization of fully controlled, coherent many-body quantum 
systems is an outstanding challenge in science and engineering. As 
quantum simulators, they can provide insights into strongly correlated 
quantum systems and the role of quantum entanglement1, and ena-
ble realizations and studies of new states of matter, even away from 
equilibrium. These systems also form the basis of the realization of 
quantum information processors2. Although basic building blocks of 
such processors have been demonstrated in systems of a few coupled 
qubits3–5, the current challenge is to increase the number of coherently 
coupled qubits to potentially perform tasks that are beyond the reach 
of modern classical machines.

Several physical platforms are currently being explored to reach these 
goals. Systems composed of about 10–20 individually controlled atomic 
ions have been used to create entangled states and to explore quantum 
simulations of Ising spin models6,7. Similarly sized systems of pro-
grammable superconducting qubits have been implemented recently8. 
Quantum simulations have been carried out in larger ensembles of 
more than 100 trapped ions without individual readout9. Strongly 
interacting quantum dynamics has been explored using optical lattice 
simulators10. These systems are already addressing computationally 
difficult problems in quantum dynamics11 and the fermionic Hubbard 
model12. Larger-scale Ising-like machines have been realized in super-
conducting13 and optical14 systems, but these realizations lack either 
coherence or quantum nonlinearity, which are essential for achieving 
full quantum speedup.

Arrays of strongly interacting atoms
A promising avenue for realizing strongly interacting quantum matter 
involves coherent coupling of neutral atoms to highly excited  
Rydberg states15,16 (Fig. 1a). This results in repulsive van der Waals 
interactions (of strength = /V C Rij ij

6) between Rydberg atom pairs at a 
distance Rij (ref. 15), where C > 0 is the van der Waals coefficient. Such 
interactions have recently been used to realize quantum gates17–19, to 
implement strong photon–photon interactions20 and to study quantum 
many-body physics of Ising spin systems in optical lattices21–23 and in 

probabilistically loaded dipole trap arrays24. Our approach combines 
these strong, controllable interactions with atom-by-atom assembly of 
arrays of cold neutral 87Rb atoms25–27. The quantum dynamics of this 
system is governed by the Hamiltonian
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where Δi are the detunings of the driving lasers from the Rydberg  
state (Fig. 1b), σ = | 〉〈 |+ | 〉〈 |g r r gx
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the ground state |gi〉 and the Rydberg state |ri〉 of an atom at position i, 
driven at Rabi frequency Ωi, ni = |ri〉〈ri|, and ħ is the reduced  
Planck constant. Here, we focus on homogeneous coherent coupling 
(|Ωi| = Ω, Δi = Δ), controlled by changing laser intensities and  
detunings in time. The interaction strength Vij is tuned either by  
varying the distance between the atoms or by coupling them to a  
different Rydberg state.

The experimental protocol that we implement is depicted in Fig. 1c  
(see also Extended Data Fig. 1). First, atoms are loaded from a magneto- 
optical trap into a tweezer array created by an acousto-optic deflector.  
We then use a measurement and feedback procedure that eliminates 
the entropy associated with the probabilistic trap loading and results 
in the rapid production of defect-free arrays with more than 50 laser-
cooled atoms, as described previously26. These atoms are prepared 
in a preprogrammed spatial configuration in a well-defined internal  
ground state |g〉 (Methods). We then turn off the traps and let the  
system evolve under the unitary time evolution U(Ω, Δ, t), which is 
realized by coupling the atoms to the Rydberg state |r〉 = |70S1/2〉 with 
laser light along the array axis (Fig. 1a). The final states of individual 
atoms are detected by turning the traps back on and imaging the recap-
tured ground-state atoms via atomic fluorescence; the anti-trapped 
Rydberg atoms are ejected. The atomic motion in the absence of traps 
limits the time window for exploring coherent dynamics. For a typical 
sequence duration of about 1 μs, the probability of atom loss is less than 
1% (see Extended Data Fig. 2).

Controllable, coherent many-body systems can provide insights into the fundamental properties of quantum matter, 
enable the realization of new quantum phases and could ultimately lead to computational systems that outperform 
existing computers based on classical approaches. Here we demonstrate a method for creating controlled many-body 
quantum matter that combines deterministically prepared, reconfigurable arrays of individually trapped cold atoms with 
strong, coherent interactions enabled by excitation to Rydberg states. We realize a programmable Ising-type quantum 
spin model with tunable interactions and system sizes of up to 51 qubits. Within this model, we observe phase transitions 
into spatially ordered states that break various discrete symmetries, verify the high-fidelity preparation of these states 
and investigate the dynamics across the phase transition in large arrays of atoms. In particular, we observe robust many-
body dynamics corresponding to persistent oscillations of the order after a rapid quantum quench that results from a 
sudden transition across the phase boundary. Our method provides a way of exploring many-body phenomena on a 
programmable quantum simulator and could enable realizations of new quantum algorithms.

1Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA. 2Department of Physics and Research Laboratory of Electronics, Massachusetts Institute of Technology, 
Cambridge, Massachusetts 02139, USA. 3Institute for Theoretical Atomic, Molecular and Optical Physics, Harvard-Smithsonian Center for Astrophysics, Cambridge, Massachusetts 02138, USA. 
4Division of Physics, Mathematics and Astronomy, California Institute of Technology, Pasadena, California 91125, USA.

© 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.

http://www.nature.com/doifinder/10.1038/nature24622


5 8 0  |  N A T U RE   |  VO  L  5 5 1  |  3 0  n o v e m b e r  2 0 1 7

ArticleRESEARCH

The strong, coherent interactions between Rydberg atoms provide 
an effective coherent constraint that prevents simultaneous excitation 
of nearby atoms into Rydberg states. This is the essence of the so-called 
Rydberg blockade15, demonstrated in Fig. 1d. When two atoms are 
sufficiently close that that their Rydberg–Rydberg interactions Vij 
exceed the effective Rabi frequency Ω, multiple Rydberg excitations are 
suppressed. This defines the Rydberg blockade radius Rb, at which 
Vij = Ω (Rb = 9 μm for |r〉 = |70S1/2〉 and Ω = 2π × 2 MHz, as used here). 
In the case of resonant driving of atoms separated by a = 23 μm, we 
observe Rabi oscillations associated with non-interacting atoms (blue 
curve in Fig. 1d). However, the dynamics changes substantially as we 
bring multiple atoms close to each other (a = 2.87 μm < Rb). In this case, 
we observe Rabi oscillations between the ground state and a collective 

state with exactly one excitation ( = / ∑ | … … 〉W N g r g(1 ) i i N1 ) with 
the characteristic N  scaling of the collective Rabi frequency24,28,29. 
These observations enable us to quantify the coherence properties of 
our system (see Methods and Extended Data Fig. 3). In particular, the 
amplitude of Rabi oscillations in Fig. 1d is limited mostly by the state 
detection fidelity (93% for |r〉 and about 98% for |g〉; Methods). The 
individual Rabi frequencies are controlled to better than 3% across the 
array, whereas the coherence time is limited ultimately by the small 
probability of spontaneous emission from the intermediate state |e〉 
during the laser pulse (scattering rate 0.022 μs−1; Methods).

Programmable quantum simulator
In the case of homogeneous coherent coupling considered here, the 
Hamiltonian in equation (1) resembles closely the paradigmatic Ising 
model for effective spin-1/2 particles with variable interaction range. 
Its ground state exhibits a rich variety of many-body phases that break 
distinct spatial symmetries (Fig. 2a). Specifically, at large negative  
values of Δ/Ω, its ground state corresponds to all atoms in the state |g〉, 
corresponding to the paramagnetic or disordered phase. As Δ/Ω is 
increased towards large positive values, the number of atoms in |r〉 
increases and interactions between them become important. This gives 
rise to spatially ordered phases in which Rydberg atoms are arranged 
regularly across the array, resulting in ‘Rydberg crystals’ with different 
spatial symmetries30,31, as illustrated in Fig. 2a. The origin of these 
correlated states can be understood intuitively by first considering the 
situation in which Δ Ω+ +� � �V Vi i i i, 1 , 2, that is, with blockade for 
neighbouring atoms but negligible interaction between next-nearest 
neighbours. In this case, the ground state corresponds to a Rydberg 
crystal that breaks Z2 translational symmetry in a manner analogous 
to antiferromagnetic order in magnetic systems. Moreover, by  
tuning the parameters so that Δ Ω+ + +� � �V V V,i i i i i i, 1 , 2 , 3 and 

Δ Ω+ + + +� � �V V V V, ,i i i i i i i i, 1 , 2 , 3 , 4  , we obtain arrays with broken Z3 
and Z4 symmetries, respectively (Fig. 2).

To prepare the system in these phases, we control the detuning Δ(t) 
of the driving lasers dynamically to transform the ground state of the 
Hamiltonian adiabatically from a product state of all atoms in |g〉 to 
crystalline states22,31. In contrast to previous work where Rydberg 
crystals are prepared via a sequence of avoided crossings22,31,32, the 
operation at a finite Ω and well-defined atom separation enables us to 
move across a single phase transition into the desired phase directly33.

In the experiment, we first prepare all atoms in state |g〉 = |5S1/2, F = 2, 
mF = −2〉 by optical pumping. We then switch on the laser fields and 
sweep the two-photon detuning from negative to positive values using 
the functional form shown in Fig. 3a. Figure 2b displays the resulting 
single-atom trajectories in a group of 13 atoms for three different inter-
action strengths as we vary the detuning Δ. In each of these instances, 
we observe a clear transition from the initial state |g1, …, g13〉 to an 
ordered state of different broken symmetry. The distance between the 
atoms determines the interaction strength, which leads to different 
crystalline order for a given final detuning. To achieve Z2 order,  
we arrange the atoms with a spacing of 5.74 μm, which results  
in a measured nearest-neighbour interaction strength (see Extended 
Data Fig. 4) of Ω= π× = π×+ �V 2 24 MHz 2 2 MHzi i, 1 , while the 
next-nearest-neighbour interaction is small (2π × 0.38 MHz). This 
results in a build-up of antiferromagnetic order whereby every other 
trap site is occupied by a Rydberg atom (Z2 order). By reducing the 
spacing between the atoms to 3.57 μm and 2.87 μm, Z3 and Z4 order is 
observed, respectively (Fig. 2b).

We benchmark the performance of the quantum simulator by com-
paring the measured build-up of Z2 order with theoretical predictions 
for a N = 7 atom system, obtained via exact numerical simulations. As 
shown in Fig. 3, this fully coherent simulation without free parameters 
yields excellent agreement with the observed data when the finite detec-
tion fidelity is accounted for. The evolution of the many-body states in 
Fig. 3c shows that we measure the perfect antiferromagnetic state with 
54(4)% probability (here and elsewhere, unless otherwise specified, the 
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Figure 1 | Experimental platform. a, Individual 87Rb atoms (green) are 
trapped using optical tweezers (vertical red beams) and arranged into 
defect-free arrays. Coherent interactions Vij between the atoms (arrows) 
are enabled by exciting them (horizontal blue and red beams) to a  
Rydberg state with strength Ω and detuning Δ (inset). b, A two-photon 
process couples the ground state |g〉 = |5S1/2, F = 2, mF = −2〉 to the 
Rydberg state |r〉 = |70S1/2, J = 1/2, mJ = −1/2〉 via an intermediate  
state |e〉 = |6P3/2, F = 3, mF = −3〉 with detuning δ, using circularly 
polarized 420-nm and 1,013-nm lasers with single-photon Rabi 
frequencies of ΩB and ΩR, respectively. Typical experimental values are 
δ Ω Ω≈ π× ≈ π×�2 560 MHz ( , ) 2 (60, 36) MHzB R . c, The experimental 
protocol consists of loading the atoms into a tweezer array (1) and then 
rearranging them into a preprogrammed configuration (2). After this, the 
system evolves under U(t) with tunable parameters Δ(t), Ω(t) and Vij. This 
evolution can be implemented in parallel on several non-interacting  
sub-systems (3). We then detect the final state using fluorescence  
imaging (4). Atoms in state |g〉 remain trapped, whereas atoms in state |r〉 
are ejected from the trap and detected as the absence of fluorescence 
(indicated with red circles). d, For resonant driving (Δ = 0), isolated atoms 
(blue circles) display Rabi oscillations between |g〉 and |r〉. Arranging the 
atoms into fully blockaded clusters of N = 2 (green circles) and N = 3  
(red circles) atoms results in only one excitation being shared between the 
atoms in the cluster, while the Rabi frequency is enhanced by N . The 
probability of detecting more than one excitation in the cluster is ≤5%. 
Error bars indicate 68% confidence intervals and are smaller than the 
marker size.
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error denotes the 68% confidence interval). When corrected for the 
known detection infidelity, we find that the desired many-body state 
is reached with probability P = 77(6)%.

To investigate the way in which the preparation fidelity depends on 
system size, we perform detuning sweeps on arrays of various sizes 

(Fig. 4a). We find that the probability of observing the system in the 
many-body ground state at the end of the sweep decreases as the system 
size is increased. However, even at system sizes as large as 51 atoms, 
the perfectly ordered crystalline many-body state is obtained with 
P = 0.11(2)% (P = 0.9(2)% when corrected for detection fidelity). These 
probabilities compare favourably with those measured previously for 
smaller systems7,34 (see also Extended Data Fig. 5) and are remarkably 
large in view of the exponentially large, 251-dimensional Hilbert space 
of the system. Furthermore, we find that the state with perfect Z2 order 
is by far the most commonly observed many-body state (Fig. 4b). The 
observations of perfectly ordered states resulting from the dynamical 
evolution across the phase transition indicate that a substantial degree 
of quantum coherence is preserved in our 51-atom system over the 
entire evolution time.

Quantum dynamics across a phase transition
We next present a detailed study of the transition into the Z2 phase in an 
array of 51 atoms, which allows us to minimize edge effects and study 
the properties of the bulk. We first focus on analysing the atomic states 
that result from a slow sweep of the laser detuning across the resonance, 
as described in the previous section (Fig. 5). In single instances of the 
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Figure 2 | Phase diagram and build-up of crystalline phases. a, A schematic 
of the ground-state phase diagram of the Hamiltonian in equation (1) 
displays phases with various broken symmetries depending on the 
interaction range Rb/a (Rb, blockade radius; a, trap spacing) and detuning 
Δ (see main text). Shaded areas indicate potential incommensurate 
phases30. Here we show the experimentally accessible region; further 
details can be found in refs 30, 33 and 36. b, The build-up of Rydberg 
crystals on a 13-atom array is observed by slowly changing the laser 
parameters, as indicated by the red dashed arrows in a (see also Fig. 3a).  
The bottom panel shows a configuration in which the atoms are 

a = 5.74 μm apart, which results in a nearest-neighbour interaction of 
Vi,i+1 = 2π × 24 MHz and leads to Z2 order whereby every other atom 
is excited to the Rydberg state |r〉. The bar plot on the right displays the 
final, position-dependent Rydberg probability (error bars denote 68% 
confidence intervals). The configuration in the middle panel (a = 3.57 μm, 
Vi,i+1 = 2π × 414.3 MHz) results in Z3 order and the top panel 
(a = 2.87 μm, Vi,i+1 = 2π × 1,536 MHz) in Z4 order. For each configuration, 
we show a single-shot fluorescence image before (left) and after (right) the 
pulse. Red circles highlight missing atoms, which are attributed to Rydberg 
excitations.
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Figure 3 | Comparison with a fully coherent simulation. a, The laser 
driving consists of a square-shaped pulse Ω(t) (blue) with a detuning Δ(t) 
(red) that is chirped from negative to positive values. b, The data show 
the time evolution of the Rydberg excitation probability for each atom 
in a 7-atom cluster (coloured points), obtained by varying the stopping 
time tstop of the laser-excitation pulse Ω(t). The corresponding curves are 
theoretical single-atom trajectories obtained from an exact simulation of 
quantum dynamics with equation (1), the functional form of Δ(t) and Ω(t) 
used in the experiment, and finite detection fidelity. c, Evolution of the 
seven most probable many-body states (data). The target state is reached 
with 54(4)% probability (77(6)% when corrected for finite detection 
fidelity). Solid lines are theoretical (simulated) many-body trajectories. 
Error bars in b and c denote 68% confidence intervals.
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experiment, after such a slowly changing laser pulse, we observe long 
ordered chains where the atomic states alternate between the Rydberg 
and ground states. These ordered domains can be separated by domain 
walls that consist of two neighbouring atoms in the same electronic 
state (Fig. 5a)35. These features cannot be observed in the average 
excitation probability of the bulk (see Extended Data Fig. 6a).

The domain-wall density can be used to quantify the transition 
from the disordered phase to the ordered Z2 phase as a function of 
detuning Δ. As the system enters the Z2 phase, ordered domains 
grow in size, leading to a substantial reduction in the domain-wall 
density (blue points in Fig. 5b). Consistent with expectations for an 
Ising-type second-order quantum phase transition35, we observe 
domains of fluctuating length close to the transition point between 
the two phases, which is reflected by a pronounced peak in the  
variance of the domain-wall density. Consistent with predictions from 
finite-size scaling analysis30,36, this peak is shifted towards positive 
values of Δ/Ω. The measured position of the peak is Δ ≈ 0.5Ω. The 
observed domain-wall density is in excellent agreement with fully 
coherent simulations of the quantum dynamics based on 51-atom 
matrix product states (blue line in Fig. 5b); however, these simula-
tions underestimate the variance at the phase transition (see Extended  
Data Fig. 6b).

At the end of the sweep, deep in the Z2 phase (Δ Ω/ � 1) we can 
neglect Ω so that the Hamiltonian in equation (1) becomes essentially 
classical. In this regime, the measured domain-wall number distri-
bution enables us to infer directly the statistics of excitations that are 
created when crossing the phase transition. From 18,439 experimental 
realizations we obtain the distribution depicted in Fig. 5c with an 
average of 9.01(2) domain walls. From a maximum-likelihood esti-
mation we obtain the distribution corrected for detection fidelity (see 
Extended Data Fig. 7), which corresponds to a state that has on 
average 5.4 domain walls. These domain walls are probably created 
as a result of non-adiabatic transitions from the ground state when 
crossing the phase transition37, where the energy gap depends on the 
system size (and scales as 1/N)36. In addition, the preparation fidelity 
is limited by spontaneous emission during the laser pulse (an average 
of 1.1 photons are scattered per microsecond for the entire array; see 
Methods).

To further characterize the Z2-ordered state that is created, we eva
luate the correlation function

=〈 〉− 〈 〉〈 〉g n n n n (2)ij i j i j
(2)

where the average 〈…〉 is taken over experimental repetitions. We find 
that the correlations decay exponentially over distance with a decay 
length of ξ = 3.03(6) sites (see Fig. 5d and Methods; the error denotes 
the uncertainty in the fit). We note that this length does not characterize 
the system fully, as discussed below (see also Extended Data Fig. 8).

Finally, Fig. 6 demonstrates that our approach also enables the study 
of coherent dynamics of many-body systems far from equilibrium. 
Specifically, we focus on the quench dynamics of Rydberg crystals ini-
tially prepared deep in the Z2-ordered phase, as we change the detuning 
Δ(t) suddenly to the single-atom resonance Δ = 0 (Fig. 6a). After such 
a quench, we observe oscillations of many-body states between the ini-
tial crystal and a complementary crystal in which each internal atomic 
state is inverted (Fig. 6a). Remarkably, we find that these oscillations are 
robust, persisting over several periods with a frequency that is largely 
independent of the system size. This is confirmed by measuring the 
dynamics of the domain-wall density, which signals the appearance 
and disappearance of the crystalline states, shown in Fig. 6b for arrays 
of 9 and 51 atoms. We find that the initial crystal repeatedly revives 
with a period that is slower by a factor of 1.38(1) (error denotes the 
uncertainty in the fit) compared to the Rabi-oscillation period for inde-
pendent, non-interacting atoms.

Discussion
Several important features of these experimental observations should 
be noted. First, the Z2-ordered state cannot be characterized by a sim-
ple thermal ensemble. More specifically, if an effective temperature is 
estimated on the basis of the experimentally determined, corrected 
domain-wall density of 0.1, then the corresponding thermal ensemble 
predicts a correlation length of ξth = 4.48(3), which is significantly longer 
than the measured value of ξ = 3.03(6) (Methods). Such a discrepancy 
is also reflected in distinct probability distributions for the number of 
domain walls (Fig. 5c). These observations suggest that the system does 
not thermalize within the timescale of the Z2 state preparation.
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Figure 5 | Quantifying Z2 order in a 51-atom array after a slow detuning 
sweep. a, Single-shot fluorescence images of a 51-atom array before 
applying the adiabatic pulse (top row) and after the pulse (bottom three 
rows correspond to three separate instances). Red circles mark missing 
atoms, which are attributed to Rydberg excitations. Domain walls are 
identified as either two neighbouring atoms in the same state or a ground-
state atom at the edge of the array (Methods), and are indicated with blue 
ellipses. Long Z2-ordered chains between domain walls are observed. 
b, Blue circles show the mean domain-wall density as a function of 
detuning during the sweep. Error bars show the standard error of the mean 
and are smaller than the marker size. The red circles are the corresponding 
variances, and the error bars represent one standard deviation. The onset 
of the phase transition is indicated by a decrease in the domain-wall 

density and a peak in the variance (see main text for details). Each point is 
obtained from about 1,000 realizations. The solid blue curve is a fully 
coherent matrix product state (MPS) simulation without free parameters 
(bond dimension D = 256), taking measurement fidelities into account. 
c, Domain-wall number distribution for Δ = 2π × 14 MHz, obtained from 
18,439 experimental realizations (blue bars, top). Error bars indicate 68% 
confidence intervals. Owing to the boundary conditions, only even 
numbers of domain walls appear (Methods). Green bars (bottom) show 
the distribution obtained by correcting for finite detection fidelity using a 
maximum-likelihood method (Methods), which results in an average of 
5.4 domain walls; red bars show the distribution of a thermal state with the 
same mean domain-wall density (Methods). d, Measured correlation 
function g ij

(2) (equation (2)) in the Z2 phase.
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Even more striking is the coherent and persistent oscillation 
of the crystalline order after the quantum quench. With respect 
to the quenched Hamiltonian (Δ = 0), the energy density of our  
Z2-ordered state corresponds to that of an infinite-temperature 
ensemble within the manifold constrained by Rydberg blockade. 
Also, our Hamiltonian does not have any explicitly conserved quan-
tities other than total energy. Nevertheless, the oscillations persist 
well beyond the natural timescale of local relaxation (1/Ω) and the 
fastest timescale (1/Vi,i+1).

To understand these observations, we consider a simplified model 
in which the effect of long-range interactions is neglected, and nearest- 
neighbour interactions are replaced by hard constraints on neigh
bouring excitations of Rydberg states30. In this limit, the qualitative 
behaviour of the quench dynamics can be understood in terms of 
dimerized spins (Fig. 6c); owing to the blockade constraint, each dimer 
forms an effective spin-1 system with three states (|rg〉, |gg〉 and |gr〉), 
in which the resonant drive ‘rotates’ the three states over the period 

Ωπ/2 (2 ), which is close to that observed experimentally. Although 
this qualitative picture does not take into account the strong interac-
tions (constraints) between neighbouring dimers, it can be extended 
by considering a minimal variational ansatz for the many-body wave 
function based on matrix product states that respect all blockade con-
straints (Methods). Using the time-dependent variational principle, we 
derive analytical equations of motion and obtain a crystalline-order 
oscillation with a frequency of about Ω/1.51 (see Extended Data  
Fig. 9), which is within 10% of the experimental observations. These 
considerations are supported by various numerical simulations. The 
exact numerics predict that this simplified model exhibits crystal oscil-
lations with the observed frequency, while the entanglement entropy 
grows at a rate much smaller than Ω, indicating that the oscillation 
persists over many cycles (Fig. 6d and Methods). The addition of long-
range interactions leads to a faster decay of the oscillations, with a 

timescale that is determined by 1/Vi,i+2, in good agreement with experi
mental observations (Fig. 6b); the entanglement entropy also grows on 
this timescale (Fig. 6d, see also Extended Data Fig. 10).

Our observations and analysis therefore indicate that the decay of 
crystal oscillation is governed by weak next-nearest-neighbour inter-
actions. This relatively slow thermalization is rather unexpected, 
because our Hamiltonian, with or without long-range interactions, is 
far from any known integrable system30, and features neither strong 
disorder nor explicitly conserved quantities38. Instead, our observations 
are probably associated with constrained dynamics due to Rydberg 
blockade and large separations of timescales ( Ω+ +� �V Vi i i i, 1 , 2 ;  
ref. 39) that result in an effective Hilbert-space dimension that is deter-
mined by the golden ratio + /(1 5 ) 2N N  (refs 40, 41). The evolution 
within such a constrained Hilbert space gives rise to the so-called quan-
tum dimer models, which are known to possess non-trivial dynamics42. 
Although these considerations provide important insights into the 
origin of robust emergent dynamics, our results challenge conventional 
theoretical concepts and so warrant further studies.

Outlook
Our observations demonstrate that Rydberg excitation of arrays of 
neutral atoms is a promising way of studying quantum dynamics and 
quantum simulations in large systems. Our method can be extended 
and improved in several ways. Individual qubit rotations around the z 
axis could be implemented using light shifts associated with trap light, 
and a second acousto-optic deflector could be used for individual con-
trol of coherent rotations around other directions. Further improve-
ment in coherence and controllability could be obtained by encoding 
qubits into hyperfine sublevels of the electronic ground state and using 
state-selective Rydberg excitation23. Implementing two-dimensional 
arrays could provide a path towards realizing thousands of traps. 
Such two-dimensional configurations could be realized by using a  
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Figure 6 | Emergent oscillations in many-body dynamics after sudden 
quench. a, A schematic of the sequence (top, showing Δ(t)), which 
involves adiabatic preparation and then a sudden quench to single-atom 
resonance. The single-atom trajectories are shown (bottom) for a 9-atom 
cluster, with the colour scale indicating the Rydberg probability. We 
observe that the initial crystal with a Rydberg excitation at every odd trap 
site (left inset) collapses after the quench, and a crystal with an excitation 
at every even site builds up (middle inset). At a later time, the initial crystal 
revives with a frequency of Ω/1.38(1) (right inset). Error bars denote 
68% confidence intervals. b, Domain-wall density after the quench. The 
dynamics decay slowly on a timescale of 0.88 μs. Shaded region represents 

the standard error of the mean. Solid blue line is a fully coherent matrix 
product state (MPS) simulation with bond dimension D = 256, taking into 
account measurement fidelity. c, Toy model of non-interacting dimers  
(see main text). Blue (white) circles represent atoms in state |g〉 (|r〉).  
d, Numerical calculations of the dynamics after a quench, starting from an 
ideal 25-atom crystal, obtained from exact diagonalization. Domain-wall 
density (red) and the growth of entanglement entropy of the half chain  
(13 atoms; blue) are shown as functions of time after the quench. Dashed 
lines take into account only the nearest-neighbour (NN) blockade 
constraint. Solid lines correspond to the full 1/R6 interaction potential.
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two-dimensional acousto-optic deflector directly or by creating a static 
two-dimensional lattice of traps and sorting atoms with an independent 
acousto-optic deflector, as demonstrated recently25. With increased 
loading efficiencies43, the robust creation and control of arrays of  
hundreds of atoms is feasible.

Although our observations already provide insights into the physics  
associated with transitions into ordered phases and enable us to 
explore new many-body phenomena in quantum dynamics, they 
can be extended along several directions16. These include studies of 
various aspects of many-body coherence and entanglement in large 
arrays44, investigation of quantum critical dynamics and tests of the 
quantum Kibble–Zurek hypothesis37, and the exploration of stable non- 
equilibrium phases of matter45. Further extension may enable studies of 
the interplay between long-range interactions and disorder, of quantum 
scrambling46, of topological states in spin systems47, of the dynamics of 
Fibonacci anyons40,41 and of chiral clock models associated with transi-
tions into exotic Z3 and Z4 states48. Finally, we note that our approach 
is well suited for the realization and testing of quantum optimiza-
tion algorithms49,50 with system sizes that cannot be simulated using  
modern classical machines.

Online Content Methods, along with any additional Extended Data display items and 
Source Data, are available in the online version of the paper; references unique to 
these sections appear only in the online paper.
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Methods
Trapping set-up and experimental sequence. Our set-up consists of a linear 
array of up to 101 evenly spaced optical tweezers. The tweezers are generated 
by feeding a multi-tone radio-frequency signal into an acousto-optic deflector  
(AA Opto-Electronic model DTSX-400-800.850), generating multiple deflections 
in the first diffraction order and focusing them into the vacuum chamber using 
a 0.5 numerical aperture objective (Mitutoyo G Plan Apo 50X). The beams have 
a wavelength of 808 nm and a waist of approximately 0.9 μm, forming traps of 
approximate depth 1 mK.

A diagram of the experimental sequence is shown in Extended Data Fig. 1a. 
The traps are loaded from a magneto-optical trap, leading to individual tweezer 
single-atom loading probabilities of around 0.6. A fluorescence image of the array 
is taken, and the empty traps are turned off; the filled traps are rearranged to 
bring the atoms into their preprogrammed positions26. After the rearrangement 
procedure, another image of the array is taken to preselect on instances in which 
the initial configuration is defect-free. After taking the second image, we apply a 
magnetic field of about 1.5 G along the axis of the array and then optically pump 
all atoms into the |F = 2, mF = −2〉 state using a σ−-polarized beam resonant to 
the |5S1/2, F = 2〉 → |5P3/2, F = 2〉 transition. We then turn off the traps, pulse the 
Rydberg lasers on a timescale of a few microseconds, then turn the traps back on to 
recapture the atoms that are in the ground state |g〉 while pushing away the atoms in 
the Rydberg state |r〉, and finally take a third image. Because of their long lifetime, 
most of the Rydberg atoms escape from the trapping region before they decay back 
to the ground state. This provides a convenient way to detect them as missing atoms 
on the third image (with finite detection fidelity discussed in Methods section ‘State 
detection fidelity’). The entire experimental sequence, from magneto-optical trap 
formation to the third image, takes approximately 250 ms.
Rydberg laser set-up. To introduce interactions within the array, we couple 
the atomic ground state |g〉 = |5S1/2, F = 2, mF = −2〉 to a target Rydberg state 
|r〉 = |70S1/2, mJ = −1/2〉. The van der Waals interaction between two 87Rb 70S 
atoms follows a 1/R6 power law and is of the order of 1 MHz at 10 μm (ref. 51), 
making it the dominant energy scale in our system for up to several lattice sites.

The coupling between states |g〉 and |r〉 is induced by a two-photon transition, 
with |6P3/2〉 as the intermediate level. We drive the transition between |g〉 and |6P3/2〉 
with a blue 420-nm laser (MOGLabs cat-eye diode laser CEL002) and the transition 
between |6P3/2〉 and |r〉 with an infrared 1,013-nm laser injecting a tapered amplifier 
(MOGLabs CEL002 and MOA002). The detuning δ of the blue laser from  
the |g〉 ↔ |6P3/2〉 transition is chosen to be much larger than the single-photon  
Rabi frequencies (typically δ Ω Ω≈ π× ≈ π×�2 560 MHz ( , ) 2 (60, 36) MHzB R ,  
where ΩB and ΩR are the single-photon Rabi frequencies for the blue and red lasers, 
respectively), such that the dynamics can be safely reduced to a two-level transition 
|g〉 ↔ |r〉 driven by an effective Rabi frequency Ω = ΩBΩR/(2δ) ≈ 2π × 2 MHz.

The blue and infrared beams are applied counter-propagating to one another 
along the axis of the array. An external magnetic field is applied in addition, and the 
beams are circularly polarized so that blue laser drives the σ− transition between 
|g〉 and |e〉 = |6P3/2, F = 3, mF = −3〉, and the red laser drives the σ+ transition 
between |e〉 and |r〉. Such a stretched configuration minimizes the probability of 
exciting unwanted states such as |70S1/2, mJ = +1/2〉. The two beams are focused 
to waists of 20 μm (blue) and 30 μm (infrared) at the position of the atoms, to get 
high intensity while still being able to couple all atoms in the array homogeneously 
(see Methods section ‘Coherence limitations’).

The Rydberg lasers interact with the atoms during one experimental cycle for 
a few microseconds. To maintain laser coherence, the line width must be much 
smaller than a few tens of kilohertz. To achieve this, we use a fast Pound–Drever–
Hall scheme to lock our Rydberg lasers to an ultralow-expansion reference cavity 
(ATF-6010-4 from Stable Laser Systems, with a finesse of ≥4,000 at both 420 nm 
and 1,013 nm). The optical set-up used for this purpose is sketched in Extended 
Data Fig. 1b. A fraction of the beam from the blue laser first goes through a 
phase modulator (Newport 4005) driven by an 18-MHz sinusoidal signal, before 
being coupled to a longitudinal mode of the reference cavity. The reflected beam 
from the cavity is sent to a fast photodetector (Thorlabs PDA8A), whose signal 
is demodulated and low-pass-filtered to create an error signal which is fed into 
a high-bandwidth servo controller (Vescent D2-125). The feedback signal from 
the servo controller is applied to the current of the laser diode using a dedicated 
fast-input port on the laser headboard. The measured overall bandwidth of the 
lock is of the order of 1 MHz. The other part of the blue laser beam goes through 
an acousto-optic modulator (IntraAction ATM-1002DA23), whose first diffraction 
order is used to excite atoms, providing frequency and amplitude control for the 
Rydberg pulses.

A similar scheme is implemented for the 1,013-nm laser, with the notable differ-
ence that the beam used for the frequency lock first goes through a high-bandwidth 
(>5 GHz) fibre-based electro-optic modulator (EOSpace PM-0S5-05-PFA-
PFA-1010/1030). Rather than the carrier, we use a first-order sideband from the 

electro-optic modulator for the lock, which makes it possible to tune the frequency 
of the red laser over a full free-spectral range of the reference cavity (1.5 GHz) 
by tuning the driving frequency of the high-bandwidth electro-optic modulator. 
Following refs 52 and 53, we estimate that the contribution to the line width of the 
laser of the noise within the servo loop relative to the cavity is less than 500 Hz.
Measuring interaction strengths. We measure experimentally the 70S → 70S van 
der Waals interactions between atom pairs separated by 5.74 μm (identical to the 
spacing used for observing the Z2-ordered phase) to confirm our estimate of inter-
action strengths and to provide independent (and more precise) estimates of the 
exact atom spacing (Extended Data Fig. 4). At this spacing we expect the interac-
tion V to be about 2π × 20 MHz. We apply our two laser fields (420 nm and 
1,013 nm) to couple each atom to the Rydberg state, with two-photon detuning Δ. 
For Δ = 0, we observe resonant coupling from |g, g〉 to | 〉 = | 〉 + | 〉 /W g r r g( , , ) 2, 
as expected for the blockaded regime in which Ω = π× �V2 2 . However, there 
is an additional resonance at Δ = V/2 in which we drive a four-photon process 
from |g, g〉 to |r, r〉 through the off-resonant intermediate state |W〉. Using spec-
troscopy, we determine this four-photon resonance to be at Δ ≈ 2π × 12.2 MHz, 
from which we calculate V = 2Δ = 2π × 24.4 MHz. This is consistent with inde-
pendent measurements of our trap spacing of approximately 5.7 μm, from which 
we additionally calibrate the spacing used in other arrangements (3.57 μm for Z3 
order and 2.87 μm for Z4 order).
Timing limits imposed by turning off traps. Atoms can be lost unintentionally 
owing to motion away from the trapping region during the Rydberg pulse when 
the traps are off. This process depends on the atomic temperature and for how 
long we turn off the traps. In particular, with our measured temperature of 12 μK 
(Extended Data Fig. 2), the loss due to atomic motion for trap-off times of <4 μs 
is at most only about 0.1%. For longer trap-off times, we see loss of up to 2% at 6 μs 
and 9% at 10 μs. To cap this infidelity at 3%, all experiments described here operate 
with trap-off times of ≤7 μs.
State detection fidelity. Each atom is identified as being in |g〉 (or |r〉) at the end 
of the Rydberg pulse by whether it is (or is not) present in the third fluorescence 
image. Detection infidelity arises from accidental loss of atoms in |g〉 or accidental 
recapture of atoms in |r〉. For an atom in state |g〉, detection fidelity is set by the 
finite trap lifetime (which causes baseline loss of 1%) and motion due to turning 
the traps off (≤3% for all experiments shown, see Methods section ‘Timing limits 
imposed by turning off traps’). For the 7-atom data shown in Fig. 3 and the 51-atom 
data shown in Figs 4 and 5, we measured ground-state detection fidelities of 98% 
and 99%, respectively.

For an atom in state |r〉, the optical tweezer yields an anti-trapping potential, but 
there is a finite probability that the atom will decay back to the ground state and 
be recaptured by the tweezer before it can escape the trapping region. We quan-
tify this probability by measuring Rabi oscillations between |g〉 and |r〉 (Extended 
Data Fig. 3) and extracting the maximum amplitude of the oscillation signal. 
After accounting for the loss of ground-state atoms as an offset to the signal, we 
obtain a typical effective detection fidelity of 93% for the |70S1/2〉 Rydberg state. 
Furthermore, we observe a reduced detection fidelity at lower-lying Rydberg states, 
which is consistent with the dependence of the Rydberg lifetime on the principal 
quantum number54.
Correcting for finite detection fidelity. The number of domain walls is a metric 
for the quality of preparing the desired crystal state. Boundary conditions make it 
favourable to excite the atoms at the edges. Therefore, we define a domain wall as 
any instance where two neighbouring atoms are found in the same state or where 
an atom at the edge of the array is found in state |g〉. In systems composed of an 
odd number of particles, this definition sets the parity of domain walls to be even.

The appearance of domain walls can arise from non-adiabaticity across the 
phase transition, or from scattering from the intermediate 6P state, imperfect 
optical pumping, atom loss or other processes (see Methods section ‘Coherence 
limitations’). However, the observed number of domain walls is increased arti-
ficially owing to detection infidelity; any atom within a crystal domain that is 
misidentified increases the number of measured domain walls by two. For this 
reason, we use a maximum-likelihood routine to estimate the parent distribution, 
which is the distribution of domain walls in the prepared state that best predicts 
the measured distribution. We use two methods to correct for detection infidelity, 
depending on whether we are interested in only the probability of generating the 
many-body ground state or in the full probability distribution of the number of  
domain walls.
Correcting detection infidelity. Many-body ground-state preparation. Having pre-
pared the many-body ground state, the probability of correctly observing it depends 
on the measurement fidelity for atoms in the electronic ground state fg, the meas-
urement fidelity for atoms in the Rydberg state fr, and the size of the system N. 
Assuming a perfect crystal state in the Z2 phase, the total number of atoms in the 
Rydberg state is nr = (N + 1)/2 and in the ground state is ng = (N − 1)/2. The proba
bility of measuring the perfect state is then = ×p f fr

n
g
n

m
r g. Therefore, if we observe 
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the ground state with probability pexp, the probability of actually preparing this 
state is inferred to be pexp/pm. The blue data points in Fig. 4a are calculated this way.
Maximum-likelihood state reconstruction. To correct for detection fidelity in the 
entire distribution of domain walls, we use a maximum-likelihood protocol. For 
this purpose, we assume that the density of domain walls is low, such that the 
probability of preparing two overlapping domain walls, meaning three consecu-
tive atoms in the same state, is negligibly small. Under this assumption, misiden-
tifying an atom within a domain wall shifts its location, but does not change the 
total number. However, misidentification of an atom within a crystal domain 
increases the number of domain walls by two. For any prepared state with a num-
ber of domain walls ni, we calculate the probability of measuring nf domain walls, 
p(nf | ni). We construct a matrix M, which transforms an initial probability  
distribution for the number of domain walls, Wi = (p(ni = 0), p(ni = 2), …), into 
the expected observed distribution Wf = MWi, where Mkl = p(nf = k | ni = l). Given 
an experimentally observed distribution of domain walls Wo and a test  
initial distribution ′Wi , we can calculate the difference vector between them: 

′ ′′ = − = −D W W W WMo f o i .
Using D′ and the 68% confidence intervals of the measured data σ, obtained via 

an approximate parametric bootstrap method55, we define a cost function

∑′
′
σ

=










W W DC( , )
k

k

k
o i

2

where the sum is taken over the elements of the vectors. We find the most likely 
parent distribution Wi by minimizing the cost function over the different possible 
′Wi , under the constraints that that every element is between 0 and 1 and that the 

sum of the elements is 1. For this purpose, we use a sequential least-square pro-
gramming routine. To reduce biases, we use a random vector as a starting point 
for the minimization procedure. We checked that repeating the procedure several 
times with different initial vectors converged to the same parent distribution and 
that the distribution of domain walls predicted by this parent distribution was in 
excellent agreement with the measured distribution. The result of such a procedure 
on the dataset used for Fig. 5c is shown in Extended Data Fig. 7.
Adiabatic pulse optimization. To prepare the ordered phases, we use frequency- 
chirped pulses by varying the two-photon detuning Δ across the bare |g〉 ↔ |r〉 
resonance, corresponding to Δ = 0. To perform these sweeps, we drive a high- 
modulation-bandwidth voltage-controlled oscillator (Mini-Circuits ZX95-
850W-S+) according to either cubic or tangent functional forms

= − + − + |

= − + |
Δ Δ Δ

Δ Δ Δ

≤ ≤

≤ ≤

V t a t t b t t c

V t a b t t c

( ) ( ) ( )

( ) tan( ( ))
(3)cubic 0

3
0

tangent 0

min max

min max

with programmable parameters a, b and c. The output from this voltage-controlled 
oscillator is mixed (Mini-Circuits ZFM-2-S+) with a 750-MHz source to generate 
the difference frequency, which is used to drive the acousto-optic modulator in the 
420-nm-light path. The detuning Δ is set to truncate at minimum and maximum 
values of Δmin and Δmax, respectively. The tangent adiabatic sweep was used for 
datasets with 51 atoms (Figs 4 and 5) owing to improved performance, whereas 
the cubic form was used for all smaller system sizes and for the data on crystal 
dynamics (Fig. 6).

At the end of the sweep, the number of domain walls in the crystal provides a 
metric for the quality of the crystal preparation. All parameters in equation (3) are 
iteratively optimized to minimize the number of domain walls, or equivalently, to 
maximize the crystal preparation fidelity. The optimization starts with the offset 
c, followed by the parameter b, the maximum and minimum detunings Δmin/max, 
and finally the parameter a. Repeated optimization of these parameters often leads 
to better crystal preparation fidelities56.

After passing through the acousto-optic modulator, the 420-nm light is cou-
pled into a fibre. The coupling is optimized for the voltage-controlled oscillator 
frequency at which the light is resonant with the |g〉 → |r〉 transition (fopt), and 
decreases as the voltage-controlled oscillator frequency deviates from fopt. The 
power throughout all frequency sweeps is ≥75% of the power at fopt.
Coherence limitations. When sweeping into the crystalline phase, the control 
parameter Δ(t) must be varied slowly enough that the adiabaticity criterion is 
sufficiently met. However, for long pulses, additional technical errors may become 
limiting. Here, we summarize some key limitations.
State preparation fidelity. For all data analysed, we preselect defect-free atom arrays. 
The preparation fidelity is therefore given by the probability that each atom in the 
array is still present for the Rydberg pulse and that it is prepared in the correct 
magnetic sublevel: |5S1/2, F = 2, mF = −2〉. Including both factors, we estimate 
that atoms are present and in the correct magnetic sublevel with fidelity f > 98%. 
For experiments with 51 atoms, this leads to at most about one atom prepared 
incorrectly.

Spontaneous emission. The 70S Rydberg state has an estimated lifetime of 150 μs 
(including blackbody radiation at 300 K)54. In addition, for the typical intermediate 
detuning of Δ ≈ 2π × 560 MHz and the single-photon infrared and blue Rabi 
frequencies of (ΩR, ΩB) ≈ 2π × (36, 60) MHz, spontaneous emission from the 
intermediate state occurs on a timescale of 40 μs for the ground state, and intro-
duces a combined effective lifetime of 50 μs for the Rydberg state. This leads to an 
average scattering rate of 2π × 3.6 kHz.
Rabi frequency homogeneity. We aim to align our beams to globally address all 
trapped atoms with a uniform Rabi frequency |Ωi| = Ω. Experimentally, we achieve 
homogeneity up to differences of about 3% (Extended Data Fig. 3b).
Intensity fluctuations. Primarily because of pointing instability, the global Rabi 
frequency fluctuates by small amounts from shot to shot of the experiment. To 
reduce slow drifts of the beams, we use a 1:1.25 telescope to image on a camera 
their position on the plane of the atoms and feedback to stabilize their position to 
a target every 500 repetitions (about 2 min).
Rydberg laser noise. The coherence properties of the Rydberg lasers over typical 
experimental times are probed by measurements on single, non-interacting atoms. 
In particular, spin echo measurements between |g〉 and |r〉 show no visible decay 
of coherence over 5 μs (Extended Data Fig. 3c). This measurement, along with the 
measured noise contribution from the laser lock of <0.5 kHz (see Methods section 
‘Rydberg laser set-up’), indicates that the line widths of the laser are sufficiently 
narrow. Additional phase noise is introduced by the laser lock around the lock 
bandwidth of about 1 MHz. This phase noise may cause weak additional deco
herence on the adiabatic sweep experiments shown in the main text.
Finite atomic temperature. Our finite atomic temperature of approximately 12 μK 
introduces random Doppler shifts (of about 2π × 50 kHz) and fluctuations in the 
atomic positions (about 120 nm radially, 600 nm longitudinally) for each atom 
in each cycle of the experiment. The Doppler shift is very small in magnitude 
compared to the single-atom Rabi frequency Ω. The position fluctuations can 
introduce noticeable fluctuations in the interaction energy between a pair of 
atoms from shot to shot. As an example, at our chosen lattice spacing of 5.9 μm, we  
calculate an interaction energy of 2π × 24 MHz. However, if the distance fluctuates 
by about 21/2 × 120 nm ≈ 170 nm, then the actual interaction energy can range 
from 2π × 21 MHz to 2π × 29 MHz. The longitudinal position fluctuations add in 
quadrature, so they contribute less to fluctuations in distance.
Electric and magnetic fields. We observed that the Rydberg resonance can drift 
over time, especially for states with high principal quantum number n, which we 
attribute to uncontrolled fluctuations in the electric field. We can reduce these 
fluctuations by shining 365-nm ultraviolet light on the glass cell in between experi
mental sequences and during the magneto-optical trap loading period, which  
stabilizes the charge environment on the glass cell surface. Although the fluctu-
ations for states n ≥ 100 are still substantial, they become negligible (<100 kHz) 
for our chosen state n = 70.

The energy shifts of the initial state |g〉 and final state |r〉 with magnetic fields 
are identical. Differential shifts of the intermediate state are very small compared 
to the detunings of the two laser beams from the 6P3/2 state. Therefore, we do not 
expect magnetic fields to play a substantial part in fluctuations between experi-
mental runs.

We note that the use of deterministically prepared arrays allows us to optimize 
the coherence properties efficiently. For example, for collective Rabi oscillations 
of fully blockaded groups of up to three atoms, we observe an improvement in the 
product Ωτd of about an order of magnitude compared to previous work24, where 
τd is the decay time of the Rabi oscillations. In addition, the relatively high fide
lity in the preparation of Z2-ordered states with 51 atoms (Extended Data Fig. 5)  
indicates that a substantial amount of coherence is preserved over the entire  
evolution. These considerations indicate that our approach is promising for near-
term coherent experiments with large-scale systems57.
Comparison with a classical thermal state. To gain some insight into the states 
obtained from our preparation protocol (Fig. 3a), we provide a quantitative com-
parison between experimentally measured quantities and those computed from a 
thermal ensemble. In particular, we note that, deep in the ordered phase 
(Δ Ω/ � 1), the coherent coupling of the ground state to the Rydberg state can be 
neglected owing to strong energetic suppression and that the effective Hamiltonian 
becomes diagonal in the measurement basis. This allows us to calculate all prop-
erties of a thermal state even for systems of 51 atoms by computing the partition 
function explicitly via the transfer matrix method58. Also, we may consider the 
interactions only up to next-nearest neighbours because the coupling strengths for 
longer distances are weak compared to the maximum timescale that is accessible 
in our experiments. To this end, we consider the Hamiltonian
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The eigenstates of this Hamiltonian are simply 2N classical configurations, where 
each atom is in either |g〉 or |r〉. We label these configurations by a length-N vector 
i = (i1, i2, …, iN) (in ∈ {g, r}) and denote their energy by Ei. In a thermal ensemble 
ρ = exp(−βHcl)/Z, with Z ≡ tr[exp(−βHcl)] and inverse temperature β, the proba
bility of finding a particular configuration i is pi = exp(−βEi)/Z. Because Ei can 
be written as a sum of local terms involving interactions only up to a range of two, 
the partition sum can be evaluated using a standard transfer matrix of size 4 × 4. 
Moreover, using this approach, we can evaluate all measurable quantities for the 
thermal ensemble, including the average number of domain walls 〈D〉 = tr(Dρ), 
where

∑= + − − + − + −
=

−

+ +D n n n n n n[ (1 )(1 )] (1 ) (1 )
i

N

i i i i N
1

1

1 1 1

is an operator that counts the number of domain walls, the correlation function
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1
,
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and even the full counting statistics for the domain-wall distribution in the state ρ. 
In particular, the probability of measuring exactly n domain walls pn = tr(Pnρ) can 
be computed from a Fourier transform of the Kronecker delta function
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with n = 0, 1, 2, …, N + 1.
We can include the effect of imperfect detections in this formalism directly. 

To that end, we denote the expectation value with measurement infidelities of an 
observable O as

∑ Λ〈〈 〉〉 =O O p (4)
i j

i i j j
,

,

where Oi is the value of the observable in state i and Λi,j is the probability of detect-
ing state i when the system is in state j, accounting for finite detection fidelity. 
Assuming detection errors occur independently from one another, we have

∏Λ λ=i j
n

i j, ,n n

where λg,g = fg is the probability of correctly detecting an atom in the ground state, 
λr,r = fr is the probability of correctly detecting an atom in the Rydberg state, and 
λr,g = 1 − λg,g and λg,r = 1 − λr,r. Equation (4) can be evaluated using a 16 × 16 
transfer matrix for any observables of interest.

To obtain a quantitative comparison with our experiments, we determine the 
inverse temperature β in such a way that the average number of domain walls, 
including the effect of imperfect detections, matches the experimentally deter-
mined value, 〈〈D〉〉 = 9.01(2). For Δ = 2π × 14 MHz, V1 = 2π × 24 MHz and 
V2 = 2π × 0.38 MHz, this leads to β = 3.44(1)/Δ or equivalently to an entropy 
per atom of s/kB = 0.286(1) (Extended Data Fig. 8a, b). Because β characterizes 
the thermal state completely, we can extract the corresponding domain-wall dis-
tribution (Extended Data Fig. 8c) and the correlation function (Extended Data  
Fig. 8d) as described above. We find that the correlation length in the correspond-
ing thermal state is ξth = 4.48(3), which is significantly longer than the measured 
correlation length ξ = 3.03(6), from which we deduce that the experimentally pre-
pared state is not thermal.
Dynamics after sudden quench. To understand the dynamics of the Z2 Rydberg 
crystal after quenching the detuning to Δ = 0, we first consider a simplified 
model, in which interactions beyond nearest-neighbour are neglected. In addition, 
we replace the nearest-neighbour interactions with the hard constraint that two 
neighbouring atoms cannot be excited at the same time. Such an approximation 
is well controlled in the limit Ω+ �Vi i, 1 , as in the case of our experiments, for a 
time exponentially long in Vi,i+1/Ω (ref. 39). In this limit, the Hamiltonian is 
approximated by
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daries. Within this approximation, the relevant Hilbert space consists of only states 
with no neighbouring atoms in the Rydberg state; that is, =+P P 0r

i
r
i 1 . The dimen-

sion of this constrained Hilbert space is still exponentially large and grows as φN, 
where φ = 1.618… is the golden ratio.

In the simplest approximation, we can treat the array of atoms as a collection of 
independent dimers, Ψ φ| 〉 =⊗ | 〉 −t t( ) ( )i i i2 1,2 , where for each pair of atoms only 
three states are allowed owing to the blockade constraint: |r, g〉, |g, g〉 and |g, r〉. The 
dynamics of each pair with initial state |φ(0)〉 = |r,g〉 is then
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This dimer model predicts that each atom flips its state with respect to its initial 
configuration after a time τ Ω= π/2 . The corresponding oscillations between 
two complementary crystal configurations are thus a factor of 21/2 slower than an 
independent spin model would predict, which is qualitatively consistent with the 
experimental observations. We note that this dimerized ansatz does not satisfy the 
constraint =+P P 0r

i
r
i 1  between two neighbouring dimers, which is an artefact that 

originates from the artificial partitioning of the array into non-interacting dimers.
To go beyond this approximation, we consider an ansatz for the many-body 

wavefunction that treats each atom on an equal footing. The simplest such wave-
function that also allows for non-trivial entanglement between the atoms can be 
written as a matrix product state with bond dimension 2 (ref. 59). In particular we 
consider a manifold of states of the form
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and boundary vectors vL = (1, 1) and vR = (1, 0)T. Here, the indices in ∈ {g, r} enu-
merate the state of the nth atom. This manifold satisfies the constraint that no two 
neighbouring atoms are excited simultaneously. The many-body state within this 
subspace is completely specified by the N parameters θn ∈ [0, 2π]. In particular, it 
enables the initial crystal state to be represented by θ2n−1 = π/2 for atoms on odd 
sites and θ2n = 0 for atoms on even sites, as well as its inverted version, θ2n−1 = 0 for 
odd and θ2n = π/2 for even sites. Using the time-dependent variational principle60, 
we derive equations of motion for the wavefunction within this manifold. For 
an infinite system with a staggered initial state θn+2 = θn, such as the Z2-ordered 
state, the wavefunction is at all times described by two parameters: θa = θ2n−1 and 
θb = θ2n for even and odd sites. The corresponding nonlinear, coupled equations 
of motion are

θ θ θ θ θ θ
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A numerical solution of these variational equations for the crystalline initial state 
predicts periodic motion with a frequency of approximately Ω/1.51 (Extended 
Data Fig. 9), with the many-body wavefunction oscillating between two staggered 
configurations.
Decay of the oscillations and growth of entanglement after the quantum 
quench. To obtain more insight into the dynamics of our system beyond these 
variational models, we use exact numerical simulations to integrate the many-body 
Schrödinger equation. In particular, we focus on the decay of oscillations and the 
growth of entanglement entropy in our system. Owing to the exponentially grow-
ing Hilbert space, this method is limited to relatively small system sizes. We make 
use of the constrained size of the Hilbert space (blockade of nearest-neighbouring 
excitations of Rydberg states) and propagate the state vector of up to 25 spins using 
a Krylov subspace projection method. In Extended Data Fig. 10a we show the 
dynamics of the domain-wall density under the time evolution of the constrained 
Hamiltonian Hc with Ω = 2π × 2 MHz and Δ = 0. We consider two different initial 
states: the disordered state in which each atom is initially prepared in the ground 
state |g〉 and the perfect crystalline state |r, g, r, g, …〉. In both cases, the energy 
density corresponds to that of an infinite-temperature thermal ensemble in the 
constrained subspace with respect to ℋc.

For the disordered initial state, the domain-wall density relaxes quickly to a 
steady-state value. In contrast, if the system is initialized in the perfect crystalline 
state, the domain-wall density oscillates for long times and decays at a rate much 
slower than the oscillation period. We confirmed numerically that this initial  
decay time is independent of the system size. We further note that for every  
system size accessible in our numerical method, the domain-wall density does 
not relax to a steady-state value even at very long times, but continues to oscillate 
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with a reduced amplitude. Moreover, whereas the disordered initial state relaxes 
to an average domain-wall density that is consistent with a thermal state of infinite  
temperature corresponding to the energy density of the initial state, this is clearly 
not the case for the crystalline initial state. This qualitatively distinct behaviour 
for two different initial states is also reflected in the growth of entanglement 
entropy after the quench (Extended Data Fig. 10c, dashed lines). Although in 
both cases the entanglement entropy grows linearly initially, the rate of growth 
is much lower for the crystalline initial state. Moreover, unlike the case of the 
disordered initial state, in which the entanglement entropy saturates quickly to 
its maximum value (limited by the finite system size and the constrained Hilbert 
space), for the crystalline initial state the entanglement entropy does not seem to 
approach the same value.

To understand the influence of the 1/R6-decaying interactions, we show the 
corresponding dynamics and entanglement growth in Extended Data Fig. 10b, c 
(solid lines). Numerically, we treat the strong nearest-neighbour interactions 
perturbatively—by adiabatic elimination of simultaneous excitation of neigh-
bouring Rydberg states—and the weak interactions beyond nearest neighbours 
exactly. For the disordered initial state, we find that the dynamics of the domain-
wall density and the entanglement growth remain similar to the previous case, 
in which long-range interactions are neglected; in this case, the thermalization 
time is barely affected. In contrast, for the crystalline initial state, the oscilla-
tions decay much faster when next-nearest-neighbour interactions are included. 
We therefore attribute the thermalization in this case to interactions beyond the 
nearest-neighbour blockade constraint. From the growth of the entanglement 
entropy we see that the crystalline initial state still thermalizes more slowly than 
the disordered initial state.
Numerical time evolution using a matrix product state algorithm. The numer-
ical data presented in Figs 5b and 6b were obtained by simulating the evolution 
of the 51-atom array during the sweep across the phase transition and the subse-
quent sudden quench using a matrix product state algorithm with bond dimen-
sion D = 256. We simulate the entire preparation protocol to generate the Rydberg 
crystal (Fig. 5b) and use the resulting state as an initial state for the time evolution 
after the sudden quench. To this end, we use a time-evolving block decimation 
algorithm61,62, with a Suzuki–Trotter splitting of the Hamiltonian to update the 
state. The time step used in this Trotterization is ΩΔt = 0.004. We take into account 
only nearest-neighbour and next-nearest-neighbour interactions, neglecting the 
small interactions for atoms that are separated by three or more sites (as discussed 

in Methods section ‘Comparison with a classical thermal state’). We account for 
finite detection fidelities that are determined independently, but otherwise do not 
include any incoherent mechanisms. Remarkably, for local quantities, such as the 
domain-wall density, this fully coherent simulation agrees well with the experimen-
tally measured values. For higher-order correlation functions, such as the variance 
of the number of domain walls, the fully coherent simulation and the experiment 
agree only qualitatively (Extended Data Fig. 6). The quantitative difference is prob-
ably due to either limitations of the matrix product state simulations or various 
incoherent processes being present in the experiment.
Data availability. The data that support the findings of this study are available 
from the corresponding authors on reasonable request.
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Extended Data Figure 1 | Experimental sequence and Rydberg laser 
set-up. a, The tweezer array is initially loaded from a magneto-optical 
trap (MOT). A single-site-resolved fluorescence image taken with an 
electron-multiplying CCD camera (EMCCD) is used to identify the 
loaded traps. Using this information, a feedback protocol rearranges the 
loaded atoms into a preprogrammed configuration, which is verified by 
the second EMCCD image. After that, all atoms are optically pumped into 
the |F = 2, mF = −2〉 state, the tweezers are turned off and the Rydberg 

lasers are pulsed. After the traps are turned back on, a third EMCCD 
image is taken to detect Rydberg excitations with single-site resolution. 
b, Schematic representation of the Rydberg laser set-up, which is used to 
stabilize two external cavity diode lasers to a reference optical cavity with 
a fast Pound–Drever–Hall lock. TA, tapered amplifier; AOM, acousto-
optic modulator; EOM, electo-optic modulator; PD, photodetector; PBS, 
polarizing beam splitter; QWP, quarter-wave plate.
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Extended Data Figure 2 | Drop-recapture curve. Measurements of atom 
loss probability as a function of trap-off time. For short times of up to 4 μs, 
the loss is dominated by finite trap lifetime (1% plateau). At larger trap-off 
times, the atomic motion away from the tweezer introduces additional 
losses. The solid line is a Monte Carlo simulation for a temperature of 
11.8 μK.
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Extended Data Figure 3 | Typical Rabi oscillation, homogeneity and 
coherence for non-interacting atoms. a = 23 μm, Ω ≈+�V 5 kHzi i, 1 . 
a, Rabi oscillations. We observe a typical decay time of about 6 μs, which is 
limited mainly by intensity fluctuations from shot to shot. b, The fitted 
Rabi frequency for each atom across the array (spatial extent of about 

300 μm) is homogeneous to within 3%. c, Measurement of the population 
in the Rydberg state after a spin echo pulse sequence (inset). We find no 
decay of coherence over typical measurement periods of several 
microseconds, thereby ruling out fast sources of decoherence. Error bars 
in a–c denote 68% confidence intervals.
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Extended Data Figure 4 | Spectroscopic measurement of Rydberg 
interactions. Spectroscopy on pairs of atoms separated by approximately 
5.74 μm is shown. a, For single-atom losses, we observe a single peak at 
Δ = 0 corresponding to the two-photon coupling from |g, g〉 to |W〉. b, For 
two-atom losses, we observe an additional peak at Δ = 2π × 12.2 MHz. 
This corresponds to the four-photon coupling from |g, g〉 to |r, r〉 through 

the intermediate state |W〉, detuned by Δ. The interaction energy is then 
V = 2Δ. This four-photon resonance is broadened as a result of random 
atom positions within the optical tweezers that result in fluctuations in 
interaction strengths from shot to shot of the experiment. Solid lines are 
fits with a single Lorentzian (a) and the sum of two Lorentzians (b). Error 
bars denote 68% confidence intervals.
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Extended Data Figure 5 | Ground-state preparation probability. 
We compare the ground-state preparation probability obtained here 
(measured, red circles; corrected for detection infidelity, blue circles) 
with the most complete previous observations of a Z2-symmetry breaking 
transition in a system of trapped ions (green circles)34. We note that the 
interaction Hamiltonians for the two systems are not identical, owing to 
the finite interaction range. In particular, the long-range interactions tend 
to frustrate adiabatic transitions into Z2-ordered states in ref. 34 and, to 
lesser extent, in this work. Error bars denote 68% confidence intervals.
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Extended Data Figure 6 | State preparation with 51-atom clusters. 
a, Average position-dependent Rydberg probability in a 51-atom cluster 
after the adiabatic sweep. The Z2 order is visible at the edges of the 
system, whereas the presence of domain walls leads to an apparently 
featureless bulk throughout the centre of the system. Inset, average 
Rydberg probabilities in a 13-atom chain, in which the Z2 order is visible 

throughout the system, but the small system size prevents the study of bulk 
properties. b, Variance of the domain-wall distribution during Z2 state 
preparation. Points and error bars represent measured values. The solid 
red line corresponds to a full numerical simulation of the dynamics using 
a matrix product state ansatz (see text and Fig. 5). Error bars in a and b 
denote 68% confidence intervals.
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Extended Data Figure 7 | State reconstruction. a, Reconstructed parent distribution. b, Comparison of measured domain-wall distribution (red) and 
predicted observation given the parent distribution in a (blue). c, Difference between the two distributions in b.
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Extended Data Figure 8 | Comparison to a thermal state. a, Domain-wall 
density for thermal states at different entropy per atom s/kB. The lower 
line corresponds to the actual number of domain walls in a system of the 
corresponding temperature; the upper line gives the domain-wall density 
that would be measured at this temperature, given the finite detection 
fidelity. The horizontal dashed line denotes the experimentally measured 
domain-wall density, from which we infer a corresponding entropy per 
atom, and equivalently temperature, in a thermal ensemble. b, Entropy  
per atoms for a thermal state at given inverse temperature β = 1/(kBT) in 

a 51-atom array. c, Expected distribution of the number of domain walls 
for the thermal ensemble at β = 3.44/Δ, with (red) and without (blue) 
taking into account finite detection fidelity. d, Experimentally measured 
correlation function g(2)(d) (blue) and correlation function corresponding 
to a thermal ensemble at β = 3.44/Δ (grey). The inset shows the rectified 
correlation function on a logarithmic scale, indicating that the measured 
correlation function decays exponentially, but with a different correlation 
length from that obtained from a thermal state with the measured number 
of domain walls.
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Extended Data Figure 9 | Oscillations in domain-wall density using  
a variational matrix product state ansatz. The dynamics of the domain- 
wall density in the bulk of the array under the constrained Hamiltonian 
Hc at Δ = 0 is shown. The blue line shows the evolution of the domain-
wall density obtained by integrating the variational equations of motion 

(equation (5)) with initial conditions θa = π/2, θb = 0, that is, the 
crystalline initial state. The red line shows the exact dynamics of the 
domain-wall density at the centre of a system of 25 atoms initially in the 
crystalline state under the constrained Hamiltonian Hc.
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Extended Data Figure 10 | Decay of oscillations after a quench and 
entropy growth. a, Dynamics of the domain-wall density under the 
constrained Hamiltonian Hc for different initial states. The red line shows 
the domain-wall density for a system of 25 atoms initially prepared in 
the electronic ground state. In this case, the domain-wall density relaxes 
quickly to a steady value corresponding to thermalization. In contrast,  
the blue line shows the dynamics if the system is initialized in the  
Z2-ordered state. In this case, the domain-wall density oscillates over 
several periods and even for very long times does not relax fully to a steady 
value. b, Same as in a, but taking into account the full 1/R6 interactions. 
While the dynamics for an initial state |g〉⊗N is very similar to the one 

obtained in the constrained case, for the crystalline initial state the decay 
of the oscillations is faster than in the constrained model. c, Growth of 
entanglement entropy in a bipartite splitting of the 25-atom array for 
the different cases displayed in a and b. The entropy is defined as the 
von Neumann entropy of the reduced state of the first 13 atoms of the 
array. The dashed lines correspond to dynamics under the constrained 
Hamiltonian, neglecting the 1/R6 tail, whereas the solid lines take the full 
interactions into account. Red lines correspond to the initial state |g〉⊗N, 
whereas blue lines correspond to crystalline initial states. In all panels we 
chose Ω = 2π × 2 MHz and, where applicable, interaction parameters such 
that the nearest-neighbour interaction evaluates to Vi,i+1 = 2π × 25.6 MHz.
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