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Observation of Aubry-type transition in finite
atom chains via friction
Alexei Bylinskii†‡, Dorian Ganglo�†, Ian Counts and Vladan Vuletić*
The highly nonlinear many-body physics of a chain of mutually
interacting atoms in contactwith aperiodic substrate gives rise
to complex static anddynamical phenomena, such as structural
phase transitions and friction. In the limit of an infinite
chain incommensurate with the substrate, Aubry predicted
a transition with increasing substrate potential, from the
chain’s intrinsic arrangement free to slide on the substrate,
to a pinned arrangement favouring the substrate pattern1.
So far, the Aubry transition has not been observed. Here,
using spatially resolved position and friction measurements
of cold trapped ions in an optical lattice2,3, we observed a
finite version of the Aubry transition and the onset of its
hallmark fractal atomic arrangement. Notably, the observed
critical lattice depth for few-ion chains agrees well with the
infinite-chain prediction. Our results elucidate the connection
between competing ordering patterns and superlubricity in
nanocontacts—the elementary building blocks of friction.

The static arrangement of a chain of interacting atoms subject
to the periodic potential of a substrate lattice is governed by the
competition between the associated length and energy scales: the
intrinsic chain spacing competes against the lattice spacing, and the
elastic energy of the chain competes against the pinning energy of
the lattice potential. Aubry found a remarkable transition1 resulting
from this competition when considering an infinite chain of atoms
joined by springs and subject to an incommensurate sinusoidal
lattice potential (the Frenkel–Kontorova model4, see Fig. 1). Below
a critical depth of the lattice potential Uc, chain stiffness resists
pinning and favours the chain’s intrinsic arrangement, resulting
in a translationally invariant sliding phase. Above the critical
depth, the lattice potential overcomes the stiffness of the chain,
which becomes unstable against pinning. The atoms reorganize
towards lattice minima and avoid lattice maxima, which become
Peierls–Nabarro (PN) energy barriers. This results in analyticity
breaking in the atomic positions, which form an everywhere-
discontinuous fractal pattern relative to the lattice period (Fig. 1e).
The critical lattice depth Uc depends on the irrational ratio of the
chain-to-lattice spacing5 and attains its largest value at the golden
ratio ϕ= (

√
5−1)/2. In finite chains mismatched to the lattice, the

Aubry transition takes the form of a reflection-symmetry-breaking
transition6,7, which in numerical simulations has appeared largely
independent of chain length down to just five atoms7.

The problem of an atomic chain subject to a periodic potential
is central to understanding nanocontacts between solids8 (Fig. 1a),
composite materials9, dislocations in crystals4, charge density
waves4,10, adsorbed monolayers11 and biomolecular transport12.
Realistically, those situations involve finite chains, which might
additionally be attached to an external support. Furthermore,
dynamical phenomena in those systems, such as friction, remain

poorly understood even at the few-atom level. In particular,
stick–slip friction, the dominant mode of energy dissipation and
wear at the nanoscale, originates from chain pinning, and is
thought to be intimately related to Aubry’s pinned phase13, where
the force required to move the chain over the PN barriers is
the friction force. Hence, below a critical lattice depth, such that
PN barriers are absent, Aubry’s sliding phase should manifest
dynamically in smooth translation of the chain over the lattice,
known as superlubricity13—nearly frictionless transport due to
vanishing stick–slip friction. Microscopic studies of friction14,15

have been performed experimentally with tools ranging from
very sensitive nanotribology apparatuses16,17 to colloidal crystals in
optical lattices18. Although signatures of superlubricity have been
observed at the nanoscale19,20, to our knowledge, a direct and
quantitative connection of these observations to Aubry’s sliding
phase has never been established.

Following several proposals21–23, we recently studied friction be-
tween chains of trappedYb+ ions and an optical lattice (Fig. 1b) with
atom-by-atom control unavailable in condensed-matter systems2,3.
We showed that superlubricity can be achieved by structurally mis-
matching the ion chain to the optical lattice2, and, studying the ve-
locity and temperature dependence of friction3, identified a regime
where stick–slip friction is minimally affected by finite temperature.
In the present work, operating in the said regime, we observe a
transition from superlubricity to stick–slip with increasing lattice
depth (superlubricity breaking), and the accompanying formation
of discontinuities in the allowed ground-state ion positions (Aubry’s
analyticity breaking). We show that the critical lattice depth of
this transition in the few-ion chains approaches the infinite-chain
result extended to include finite external confinement24,25. Thus,
we observe the Aubry transition in a finite system, and establish
qualitatively and quantitatively that the Aubry transition and the
onset of stick–slip friction represent static and dynamic aspects,
respectively, of the same physical phenomenon.

In our system2,26,27, the atomic chain is a self-organized one-
dimensional Coulomb crystal of laser-cooled 174Yb+ ions spaced by a
fewmicrometres in a linear Paul trap. The periodic lattice potential,
with lattice constant a=185 nm, results from an optical dipole force
on the atoms by a standing wave of light (Fig. 1b). At finite depth U
the lattice deforms the ion arrangement, specified by the position xj
of each ion jmeasured from the nearest lattice maximum (Fig. 1d).
xj,0 corresponds to the intrinsic (unperturbed) U = 0 arrangement
(Fig. 1c). Although the intrinsic ion spacing d is not uniform along
the chain, it can be controlled with nanometre precision by means
of the Paul trap’s axial confinement to match or mismatch the chain
to the lattice. The chain is matched when all neighbouring ions are
separated by an integer number of lattice periods d(moda)=0. The
chain ismaximallymismatchedwhen the sumof lattice forces on the
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Figure 1 | A nanocontact, the ion-lattice system, the Frenkel–Kontorova–Tomlinson (FKT) model and the Aubry transition. a, A few-atom nanocontact
modelled as a contact-layer atomic chain (red), attached to a support (yellow) and interacting with the substrate lattice via a periodic potential (blue). b, Our
system2,26,27 of an ion chain trapped in a Paul trap (support) with typical axial vibrational frequency ω0/(2π)≈360 kHz and subject to an optical-lattice
potential (substrate) with depth U/kB tunable between 50 µK and 2 mK. The ions are laser-cooled deep into the lattice to temperatures∼0.05U/kB. Each
ion’s position relative to the lattice is observed by means of the position-dependent ion fluorescence arising in our laser-cooling scheme2 (see Methods).
c,d, The FKT model24,25 of the nanocontact (a) and our ion-lattice system (b) shown below (c) and above (d) the pinning transition. Interatomic springs of
sti�ness g couple neighbouring atoms in a chain of period d, while external springs of sti�ness K couple them to the support. Each atom’s position from the
nearest lattice maximum in the absence (presence) of the lattice is given by xj,0 (xj). Interaction with a sinusoidal potential of depth U and period a pins the
chain above a critical lattice depth Uc, resulting in avoided position regions around lattice maxima. e, In the limit N→∞, K→0 of the Frenkel–Kontorova
model, and at d(moda)/a=(

√
5− 1)/2 (the golden ratio), the curve of allowed ground-state positions xj versus xj,0 is continuous below the Aubry transition

(grey) and forms a fractal staircase above the transition (red). (Numerical results shown are forN= 101 atoms and g/K= 128.) f,g, For a realistic nanocontact,
for exampleN=5, g/K= 1 and d(moda)/a=(

√
5− 1)/2, a finite staircase forms above the transition. In a dynamical situation (fast translation of support) (g),

the gaps in the static staircase (f) appear as hysteresis loops in friction measurements above the superlubricity-breaking transition. The neighbouring atom
trajectory (dotted line) highlights that the secondary gaps arise from the primary instabilities of other atoms in the chain near their respective lattice maxima.

ions at their intrinsic positions xj,0 cancels2,28:
∑

j sin(2πxj,0+θ)=0
for any θ . This system is well described by a generalized Frenkel–
Kontorova–Tomlinson (FKT)model24,25 of a nanocontact, involving
an N -atom chain joined by interatomic springs of stiffness (spring
constant) g (produced here by Coulomb forces), and attached to a
rigid support by external springs of stiffness K =mω2

0 , where ω0/2π
is the axial common-mode vibrational frequency in the Paul trap,
andm is an ion’s mass (Fig. 1c). Both components of chain stiffness
g and K cause resistance to deformation and pinning by the lattice
when the ion chain is mismatched.

In a weak lattice, the ion chain is deformed but still continuously
distributed relative to the lattice—that is, the ions assume all
positions relative to the lattice as the support (Paul trap) is translated
along it. In a sufficiently deep lattice, ions become pinned when they
are excluded from regions near lattice maxima by its anti-confining

negative potential curvature (2π2/a2)U overcoming the confining
total chain stiffness (g and K ), and creating finite PN barriers
there (Fig. 1d). This anti-confinement of a given ion near a lattice
maximum, combined with interatomic forces, further excludes
other ions from other lattice regions. Thus, analyticity breaking is
the formation of discontinuities in the curve of an atom’s position xj
versus its unperturbed position xj,0 as the support is translated.
The primary discontinuity is a gap near xj,0 = 0 from xj < 0 on
one side of the PN barrier to xj > 0 on the other side, and
progressively smaller gaps form near xj,0= dij(mod a) due to anti-
confinement of progressively further neighbours i in the chain at
intrinsic distances dij away. For a finite mismatched chain ofN ions,
each curve xj should accordingly have N gaps as the support is
translated by one lattice period a (Fig. 1f). In the N =∞ theoretical
limit, for an incommensurate chain with irrational d(mod a)/a,
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Figure 2 | Observation of primary and secondary position gap formation in a mismatched two-ion chain. a, The measured positions x1,x2 versus the
unperturbed positions x1,0,x2,0 show both a primary hysteresis loop2 for each ion, and a secondary hysteresis loop induced by the other ion’s hysteresis,
when the trap position X is quickly moved forwards and backwards in the vicinity of the corresponding Peierls–Nabarro barriers; here xj,0(t)=xj,0+X(t).
These loops directly reveal the gaps in each ion’s ground-state position distribution. The height of each loop measures the corresponding gap, and the
width of the loops measures the static friction force Fs. The two ions in this measurement are mismatched to the lattice with d(moda)/a≈2/3. The
secondary gap, corresponding to a much smaller energy scale, appears smoothed owing to finite ion temperature. The error bars show a statistical
uncertainty of one standard deviation. b, As the lattice depth U is increased, the primary and secondary position gaps open up, as seen in the increasing
di�erence between the forward and backward ion positions1xj, shown on the colour scale, and stick–slip friction sets in, as manifested by the increasing
static friction force, corresponding to the half-width of the blue region1xj>0. Note the di�erent scales for the primary and secondary loops on the ion
position axis in a and on the colour axis in b.

the curve of xj (which coincides with the hull function4) forms a
nowhere-analytic fractal staircase with an infinite number of gaps
(Fig. 1e). The primary gap parameterizes the Aubry analyticity-
breaking transition29. In a finite chain, the primary gap for the centre
ion corresponds to displacement of this ion and the chain to one side
of the emerging central PN barrier, parameterizing the reflection-
symmetry-breaking of the finite Aubry transition4,6,7,22.

The appearance of finite PN barriers, which give rise to the gaps
in the static ground-state chain arrangement at theAubry transition,
leads in the dynamic situation to stick–slip friction associated with
the now bistable PN potential. Consider the ions’ relative positions
xj versus the support positionX (or, equivalently, versus the intrinsic
positions xj,0(t)=xj,0+X(t)) when the support ismoved sufficiently
quickly such that the chain does not have time to thermally relax
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Figure 3 | Observation of superlubricity breaking for matched and
mismatched ion chains. For N= 1−5 ions matched to the lattice (inset),
the measured mean friction force per ion as a function of lattice depth is
independent of ion number, corresponding to the single-ion
Prandtl–Tomlinson (PT) model (black dashed line), with superlubricity for
U<Uc=Ka2/(2π2); the interatomic springs g do not have any e�ect. For
N= 1 (black), 2 (red), 3 (green) and 5 (blue) ions mismatched to the lattice
(main figure), to break superlubricity the lattice must also overcome the
interatomic spring sti�ness g, which increases with N, thus extending the
superlubric regime to larger values of Uc. The error bars represent one
standard deviation of statistical and fitting uncertainty. To extract the
critical value Uc from the data, we fit an analytical formula for the PT model
to the single-ion and the matched chain results (black dotted line). For the
mismatched chain results, we fit a lowest-order piecewise linear model
c0+c1(U−Uc)H(U−Uc), where H is the Heaviside step function (red,
green and blue dotted lines).

across the PN barrier to the ground-state global minimum3. Then,
the chain sticks to themetastableminimumbelow the static position
gap, until the PN barrier vanishes, and a slip to the global minimum
above the position gap occurs (Fig. 1g). When the support is
moved in the opposite direction, the chain sticks to the metastable
minimum above the position gap before slipping back to the global
minimum below the position gap. This dynamical process results
in hysteresis loops enclosing the gaps in the static arrangement
(Fig. 1g). Below the pinning transition, there are no PN barriers:
the superlubric chain always follows the global minimum and the
dynamic curves of xj coincide with the continuous static curves.
Thus, the hysteresis that can be used to measure friction2,3 across
the superlubricity-breaking transition, can also be used to measure
the opening of gaps in the atomic position distribution across the
analyticity-breaking transition: the two are the dynamic and static
aspects, respectively, of the Aubry transition.

We performmeasurements on the system by applying an external
electric force F to quickly2,3 move back and forth the position
X(t)=F(t)/K of the axial trapping potential. The dynamic position
curves xj are then reconstructed from the observed ion fluorescence2
(see Methods). In the elementary case of a mismatched two-ion
chain we observe two hysteresis loops for each ion: a large one due to
the primary slips of the ion over its lattice maximum, and a smaller
one due to secondary slips induced by the primary slips of the other
ion (Fig. 2a). These hysteresis loops correspond to the appearance
of gaps in the allowed ion positions for the finite chain. The heights
of the loops 1xj give the desired static gaps (discontinuities) in
the atomic position distribution. The left and right edges of the
loops correspond to the slipping events in the stick–slip process,
and the separation between them equals twice the static friction
force Fs required to pull the chain over the corresponding PN
barrier2. The area enclosed by the loops is the energy dissipated
by stick–slip in the two slip events2. We observe these loops, and
correspondingly the position gap1xj and the static friction force Fs,
to grow with increasing lattice depth (Fig. 2b) as a result of growing
PN barriers.
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Figure 4 | Aubry transition in finite mismatched ion chains. a, The
measured critical value Uc at the chain centre is plotted against the
interatomic spring sti�ness g normalized to the fixed external spring
sti�ness K (∼ 1.5× 10−12 N m−1). Each value of g/K is obtained at a
di�erent ion number N plotted on the second horizontal axis at the top. In
the matched case (blue filled squares), regardless of ion number or
interatomic spring sti�ness, the critical lattice depth is given by the PT limit
Uc=Ka2/(2π2) (blue dotted line). In the mismatched case (red filled
diamonds), the critical lattice depth follows the Aubry transition (N=∞,
d(moda)/a=(

√
5− 1)/2), modified24,25 by the finite external confinement

K (red dotted line). The grey filled circles are zero-temperature numerical
simulations of our finite, inhomogeneous system with Coulomb
interactions. The error bars represent a±12% systematic uncertainty in
applying the lowest-order fitting model to extract Uc from the data.
b, Measured neighbour distances along each of the mismatched chains
used in a. The distances are inhomogeneous owing to the harmonic
confinement of the Coulomb chain (see Supplementary Information) and
owing to a 1%-scale asymmetry of the harmonic trap. Despite these e�ects,
the neighbour distances relative to the lattice period dj,j+1(moda)/a fall
within 1/(2N) of the golden ratio (

√
5− 1)/2 (dotted lines). The error bars

represent one standard deviation of statistical and fitting uncertainty.

For chains ofN =1−5 ions, the measured static friction force Fs
reveals that the hysteresis loops open up at a finite lattice depth Uc
separating an analytic (1xj=0) and superlubric (Fs=0) phase for
U <Uc from a gapped phase (1xj>0)with finite friction (Fs>0) for
U >Uc (Fig. 3).When the ions are matched to the lattice, analyticity
and superlubricity are observed to break at Uc≈Ka2/(2π2) for all
N (Fig. 3 inset) as in the single-atom limit of the FKT model
corresponding to the Prandtl–Tomlinson model14,19. Thus, for a
matched chain, anti-confinement by the lattice needs to overcome
only the external chain stiffnessK , as the interatomic springs remain
at constant length, and play no role. When the ions are mismatched
to the lattice, analyticity and superlubricity are observed to break at
values of Uc>Ka2/(2π2) (Fig. 3) as interatomic springs of stiffness
g help keep the ions near their unperturbed positions against the
lattice forces in the static limit, and store some of the lattice potential
energy during motion. Uc is observed to increase with ion number
as a result of increasing effective interatomic spring stiffness g .
This stiffness is calculated by linearizing next-neighbour Coulomb
forces for small lattice-induced deformations δd/d<a/d�1, and
these forces increase as ion separations d decrease when more ions
are loaded in the harmonic Paul trap, leading to g/K ≈N 1.65/4
at the chain centre (see Supplementary Information). Thus, in the
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large-N limit, the interatomic springs dominate the chain stiffness
and the pinning behaviour, and the system is well described by
the Frenkel–Kontorova model21. In this limit, and when the chain
and the substrate are maximally incommensurate at a spacing ratio
d(mod a)/a equal to the golden ratio ϕ, the Aubry transition
should occur at the largest value Uc=ga2/(2π2). Non-zero external
confinement K of an infinite golden-ratio chain should increase
this bound24,25 to Uc& ( g +K )a2/(2π2). Although the edge ions in
our finite system pin at a lower lattice depth than the centre ions
(for N > 2) as a result of reduced chain stiffness, the pinning of
the centre ions characterizes the finite-systemAubry transition4,6,7,22,
and we use Uc measured at the centre for the following quantitative
comparison with the infinite limit.

For maximally mismatched chains of N = 2 − 5 ions (each
N corresponding to a different g/K ), the measured chain-
centre values of Uc lie close to the calculated curve of Uc
versus g/K for the Aubry transition in an infinite golden-ratio
chain (Fig. 4a). Thus, a finite inhomogeneous chain with the
unperturbed arrangement tuned to cancel the lattice forces, in its
centre can reach the maximum robustness against the breaking
of analyticity and superlubricity as set by an infinite, maximally
incommensurate chain. This lattice force cancellation exists for
multiple arrangements28, which for a uniformly spaced chain
correspond to d(mod a)/a = j/N , where j=1, . . . ,N −1. If the
fraction j/N is irreducible, the finite system may be considered
pseudo-incommensurate in the sense that the unit cell is the size
of the system and the lattice forces on different atoms do not repeat.
The PN barriers and the pinning are minimized for those pseudo-
incommensurate arrangements where atoms close to each other
experience dissimilar forces—a property optimized by the golden-
ratio spacing in the infinite limit (see Supplementary Information).
For a finite uniform chain, the smallest difference |j/N −ϕ| between
a pseudo-incommensurate arrangement and the golden ratio scales
as 1/N . Although our chain spacing is non-uniform, for each N in
Fig. 4a we choose the arrangement closest to the golden-ratio-like
pseudo-incommensurate arrangement and find that the intrinsic
separations between neighbouring ions dj,j+1(mod a)/a indeed fall
within 1/(2N ) of the golden ratio (Fig. 4b).

In summary we observe, with atom-by-atom control, the
transition from superlubricity to stick–slip and from continuous
to gapped position distributions in finite chains of atoms as a
function of increasing interaction with a periodic substrate. We
establish the connection between this transition, relevant for the
interaction of real surfaces governed by finite-size nanocontacts,
and Aubry’s theoretical concept of analyticity breaking in infinite
chains. Furthermore, quantum tunnelling of ions through the lattice,
realizable in our system, could lead to a quantum-mechanical
picture of friction, possibly relevant at the nanoscale and at cold
surfaces. Furthermore, in a deformable optical lattice30, Peierls
transition physics could be studied, potentially elucidating the
effects of tunnelling on charge density wave depinning10.

Methods
Methods and any associated references are available in the online
version of the paper.
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Methods
Position detection via fluorescence. Our dynamic position curves xj
are reconstructed from the observed ion fluorescence, which varies
proportionally to the optical potential energy (U/2)(1+cos(2πxj)) experienced
by the ion. This is a result of our laser-cooling scheme, which uses the
optical lattice to couple the vibrational levels n and n−2 of the ion’s quantized
motion in the optical lattice well26. The spatial dependence of this Raman coupling

is such that the off-resonant transition n→n, which on resonance would be
stronger by two orders of the Lamb–Dicke factor η (η≈10% for our system),
increases from lattice node to lattice anti-node proportionally to the
optical potential. The stronger this coupling is, the larger the scattered
fluorescence, resulting in the position-dependent fluorescence signal, which,
when time-resolved, amounts to sub-wavelength imaging of the ion’s
average trajectory.
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