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Quantum phase transitions (QPTs) involve transformations 
between different states of matter that are driven by quantum 
fluctuations1. These fluctuations play a dominant part in the 
quantum critical region surrounding the transition point, where 
the dynamics is governed by the universal properties associated 
with the QPT. Although time-dependent phenomena associated 
with classical, thermally driven phase transitions have been 
extensively studied in systems ranging from the early Universe to 
Bose–Einstein condensates2–5, understanding critical real-time 
dynamics in isolated, non-equilibrium quantum systems remains 
a challenge6. Here we use a Rydberg atom quantum simulator with 
programmable interactions to study the quantum critical dynamics 
associated with several distinct QPTs. By studying the growth of 
spatial correlations when crossing the QPT, we experimentally 
verify the quantum Kibble–Zurek mechanism (QKZM)7–9 for an 
Ising-type QPT, explore scaling universality and observe corrections 
beyond QKZM predictions. This approach is subsequently used 
to measure the critical exponents associated with chiral clock 
models10,11, providing new insights into exotic systems that were 
not previously understood and opening the door to precision studies 
of critical phenomena, simulations of lattice gauge theories12,13 and 
applications to quantum optimization14,15.

The Kibble–Zurek mechanism2,3, which describes nonequilibrium 
dynamics and the formation of topological defects in a second-order 
phase transition driven by thermal fluctuations, has been verified exper-
imentally in a wide variety of physical systems4,5. Recently, the concepts 
underlying the Kibble–Zurek description have been extended to the 
quantum regime7–9. Here, the typical size of the correlated regions, ξ, 
after a dynamical sweep across the QPT scales as a power law of the 
sweep rate, s, with an exponent μ determined entirely by the QPT’s 
universality class. Specifically, QKZM postulates that when the timescale 
over which the Hamiltonian changes becomes faster than the character-
istic response time, τ, which is determined by the inverse of the energy 
gap between the ground and excited states, nonadiabatic excitations 
prevent the continued growth of correlated regions (Fig. 1a, b). The 
resulting scaling exponent, μ = ν/(1 + νz), is determined by a com-
bination of the critical exponent, ν, which characterizes the divergent 
correlation length, and the dynamical critical exponent z, which charac-
terizes the relative scaling of space and time close to the critical point1. 
Although QKZM has many important implications—for example, in 
quantum information science14—its experimental verification is chal-
lenging owing to the coupling of many-body systems to the environ-
ment15. Recently, experimental control over isolated quantum systems 
enabled the observation of scaling behaviour across QPTs described 
by mean-field theories16,17. Although important aspects of QPTs have 
already been explored in strongly correlated systems18, experimental 
observation of quantum critical phenomena beyond mean-field approx-
imations in real-time dynamics remains a challenge15,19,20.

We investigate quantum criticality using a reconfigurable one- 
dimensional array of  87Rb atoms with programmable interactions21. In 
our system, 51 atoms in the electronic ground state ∣ ⟩g , which are 
evenly separated by a controllable distance, are homogeneously coupled 
to the excited Rydberg state ∣ ⟩r , in which they experience van der 
Waals interactions with a strength that decays as V(r) ∝ 1/r6, where r 
is the interatomic distance. This system is described by the many-body 
Hamiltonian,
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where ∣ ⟩ ⟨ ∣=n r ri i i  is the projector onto the Rydberg state at site i, Δ 
and Ω are the detuning and Rabi frequency of the coherent laser cou-
pling between ∣ ⟩g  and ∣ ⟩r , respectively, Vij is the interaction strength 
between atoms in the Rydberg state at sites i and j, and ħ is the reduced 
Planck constant. For negative values of Δ, the many-body ground state 
corresponds to a state in which all atoms are in the electronic ground 
state ∣ ⟩g , up to quantum fluctuations, and belongs to a so-called ‘dis-
ordered’ phase with no broken spatial symmetry. For Δ > 0, several 
spatially ordered phases arise from the competition between the detun-
ing term, which favours a large Rydberg fraction, and the Rydberg 
blockade, which prohibits simultaneous excitation of atoms separated 
by a distance smaller than the blockade radius, Rb, defined by 
V(Rb) ≡ Ω. As illustrated in Fig. 1c, d, we probe different QPTs into 
states breaking various symmetries by choosing the interatomic spacing 
and sweeping the control parameter, Δ, across the phase boundary.

We first focus on the QPT into the antiferromagnetic phase with 
broken Z2 symmetry, which is known to belong to the Ising universality 
class1. Using an interatomic spacing, a, such that Rb/a ≈ 1.69, we create 
an array of 51 atoms in the electronic ground state and slowly turn on 
Ω at Δ < 0, adiabatically preparing the system in the ground state of 
the disordered phase. We then increase the detuning at a constant rate, 
s, up to a final value Δf, at which point we slowly turn off Ω (see inset 
of Fig. 1c) and measure the state of every atom. We examine the dynam-
ical development of correlations between the atoms, characterized by 
the Rydberg density–density correlation function:
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where the normalization factor Nr is the number of pairs of sites sepa-
rated by distance r. By fitting an exponential decay to the modulus of 
the correlation function, we extract the correlation length. The exper-
imental results show growth of the correlation length as the detuning 
approaches the critical point, followed by saturation once the detuning 
is swept past the critical point into the ordered phase (Fig. 2b). From 
the individual images it is apparent that, whereas for fast sweeps the 
ordered domains are frequently interrupted by defects (domain walls), 
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for slow ramps considerably longer domains are observed (Fig. 2a).  
A systematic analysis of the final correlation lengths after crossing into 
the ordered phase shows that a power-law scaling model ξ(s) = ξ0(s0/s)μ 
with μ = 0.50(3), where the uncertainty represents one standard devi-
ation, describes our measurements accurately (Fig. 2c). These results 
are consistent with numerical simulations (red points) of the coherent 
evolution of the system using matrix product states (MPS).

The QPT into the Z2-ordered phase is in the Ising universality class1, 
with critical exponents in one dimension of z = 1, ν = 1 and, conse-
quently, μIsing = 0.5. Our observations are consistent with these quan-
titative predictions and are distinct from those associated with a 
mean-field Ising transition, which are described1,16 by z = 1, ν = 1/2 
and yield μmf = 1/3. These results offer the first experimental verifica-
tion of the QKZM in an isolated quantum system that defies a mean-
field description.

A key concept associated with critical phenomena is that of univer-
sality, which is manifested by the collapse of correlations to a universal 
form when rescaled according to the corresponding critical exponents1. 
Such a signature is a strong test of an underlying universal scaling law 

and, in connection with the QKZM, should appear upon rescaling 
lengths22 by (s/s0)μ. Figure 3a shows that the rescaled correlations for 
Rb/a ≈ 1.81 indeed collapse onto two smooth branches, which in turn 
collapse on top of each other when the correlations are rectified as 
(−1)rG(r) (inset in Fig. 3a), according to the Z2-order parameter.

While the QKZM is a coarse-grained description that predicts the 
mean density of defects, the shape of the correlation function gives 
further access to microscopic details of the system. Detailed inspec-
tion of the rescaled correlation functions reveals nontrivial deviations 
from a simple exponential decay. In particular, the correlations in 
Fig. 3a become negative for a range of distances, which implies com-
plex dynamics in the formation and spreading of defects. The observed 
corrections to simple QKZM predictions are consistent with recent 
theoretical analyses22,23 and are in good agreement with numerical sim-
ulations using MPS (Fig. 3c). Finally, applying the universal rescaling 
to the correlation growth shown in Fig. 2b enables us to independently 
estimate the values of critical exponents (Extended Data Fig. 7), show-
ing that our results are consistent with z = ν = 1, which is associated 
with the Ising QPT.
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Fig. 1 | Quantum Kibble–Zurek mechanism and phase diagram.  
a, Illustration of the QKZM. As the control parameter approaches its 
critical value, the response time, τ, which is given by the inverse energy 
gap of the system, diverges. b, When the temporal distance to the critical 
point becomes equal to the response time, as marked by the red crosses in 
a, the correlation length, ξ, stops growing owing to nonadiabatic 
excitations. c, Numerically calculated ground-state phase diagram. Circles 
(diamonds) denote numerically obtained points along the phase 

boundaries, calculated using (infinite-size) density-matrix 
renormalization group techniques (Methods). The shaded regions are 
guides for the eye. Dashed lines show the experimental trajectories across 
the phase transitions determined by the pulse diagram (inset). d, Measured 
density–density Rydberg correlations (circles) with fits to the expected 
ordered pattern (solid lines), consistent with Z4- (orange), Z3- (purple) 
and Z2-ordered (green) states. Error bars denote the standard error of the 
mean (s.e.m.) and are smaller than the marker size.
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Fig. 2 | QKZM for a QPT into the Z2-ordered phase. a, Single-shot 
images of the atom array before and after a fast (orange arrow) and a slow 
(blue arrow) sweep across the phase transition, showing larger average 
sizes of correlated domains for the slower sweep. Green spots (open 
circles) represent atoms in ∣ ⟩g  ∣ ⟩r( ) . Blue rectangles mark the position of 
domain walls, and the red and grey coloured regions highlight the extent 
of the correlated domains. b, Correlation length growth and saturation as 

the system crosses the QPT at different rates. The grey dashed line 
indicates the critical detuning. c, Experimental (green) and MPS-
simulated results (red) for the dependence of the correlation length on the 
inverse sweep rate across the phase transition. The length is extracted from 
fitting the modulus of the correlation data to an exponential decay. Error 
bars denote fit uncertainty. The dashed line indicates a power-law fit to the 
experimental results with a scaling exponent of μ = 0.50(3).
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Having established the validity of the QKZM—as well as its  
limitations—for a QPT in the Ising universality class, we now explore 
transitions into more complex ZN-ordered phases, where Rydberg 
excitations are evenly separated by N > 2 sites (see Fig. 1c). The corre-
lation functions at smaller interatomic spacings after slow detuning 
sweeps reflect the spatial ordering of the Z3- and Z4-ordered phases 
(Fig. 1d). In addition, we determine the probability of finding two 
Rydberg excitations separated by N sites for each value of N and Rb 
(Fig. 4b). By combining these measurements with the numerically 
obtained critical points (see Fig. 1c), we experimentally identify approx-
imate boundaries for the regions that are consistent with the Z2-, Z3- 
and Z4-ordered phases in Fig. 4b. Within these regions, the dominant 
type of order is the one associated with the corresponding phase, 
whereas the second most prevalent type of order arises from the  
lowest-energy (most probable) defects. In particular, we observe that 
in the Z3-ordered phase, the most likely type of defect changes from  
Z2-like (for smaller values of Rb/a) to Z4-like as Rb/a increases.

We test for a power-law scaling behaviour of the correlation length 
growth as a function of ramp speed at different interaction strengths 
(Fig. 4c). To compare the results for all interaction strengths consist-
ently, we fit the correlation function to an exponentially decaying  
density wave with a period set by the underlying order (as opposed to 
the modulus of the correlation function used in Fig. 2c). The scaling is 
extracted through a power-law fit to the resulting correlation lengths. 
In parameter regimes far from regions of competing order, we observe 
three stable plateaus for the regions consistent with Z2, Z3 and Z4 order. 
For interaction strengths at which there is a strong competition between 
different types of order, we do not observe the formation of long-range 
correlations (pale-blue points in Fig. 4c). In these cases, the detuning 
sweeps either do not fully cross the phase boundary into the ordered 
phases (Methods) or potentially enter theoretically predicted incom-
mensurate phases11,24.

To understand these observations, we compare them to finite-size 
scaling analyses of ground-state properties25–27, as well as MPS-based 
numerical simulations of our experimental protocol for the full 

Hamiltonian (equation (1)). For the transitions into the Z2-ordered 
phase, some of the extracted values of μ are slightly larger than the 
exponent expected from the Ising model, μIsing = 0.5. We attribute these 
deviations to a combination of long-ranged interactions, of finite-size 
and/or time effects, and of systematic effects related to the inversion of 
the alternating pattern (Fig. 3a, c; see also Methods).

QPTs associated with the breaking of a Z3 symmetry are more com-
plex owing to competition between the different types of defects that 
can be formed. In our system, the defects correspond to two different 
types of domain walls, in which the distance between neighbouring 
Rydberg excitations is two and four sites (see Fig. 4a). For experimen-
tally accessible parameter regimes, the different associated excitation 
energies generally lead to an asymmetry between these defects (see also 
Fig. 4b). Correspondingly, the Z3-symmetry breaking is believed to be 
in the universality class of the three-state chiral clock model (CCM) 
(see Fig. 4a, Methods and ref. 25).

The exact nature of such phase transitions has been a subject of 
intense theoretical research for the past three decades10,11,25–28. Only 
very recently, numerical studies of equilibrium scaling properties25–27 
provided evidence for a direct transition27 along some paths across the 
phase boundary, where the expected range of values of the scaling expo-
nent is μCCM < 0.45 (ref. 25) and μCCM > 0.25 (ref. 26). Our experimental 
results are consistent with a direct CCM phase transition over a range 
of interaction strengths with μ ≈ 0.38, in agreement with the theoretical 
value obtained by combining the results of the most extensive numer-
ical finite-size scaling studies25,27 (dashed line in Fig. 4c). Further  
evidence for a direct chiral QPT is provided by the universal scaling 
behaviour into the Z3-ordered phase (see Fig. 3b, d).

The transition into the Z4-ordered phase is even more involved. At 
present, complete understanding of this transition is lacking owing to 
the potential presence of an intermediate gapless incommensurate 
phase11,28. Our experimental results in this region are reasonably  
consistent with power-law scaling with μ ≈ 0.25. Although recent  
theoretical work shows that QKZM scaling may still hold on quenching 
through a gapless phase, albeit with a modified (system-specific) 
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Fig. 3 | Universality of spatial correlations. a, c, Collapse of the measured 
(a) and numerically calculated (c) correlations in the Z2-ordered phase, 
with distances rescaled according to the extracted scaling exponents. The 
purple line connects the points of the correlation function that correspond 
to the slowest sweep rate. The insets show the staggered rescaled 
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nontrivial correlations between domain walls. b, d, Collapse of the 
measured (b) and numerically calculated (d) correlations in the  
Z3-ordered phase, highlighting the energetic difference of the different 
types of defect, as shown by the distinguishability of the two negative 
branches, that is, a deviation from a period-3 density wave. All error bars 
indicate the s.e.m.
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power-law exponent29, detailed theoretical understanding of our exper-
imentally observed exponents in the Z4 regime requires further 
studies.

Detailed comparison of our experimental results across all phases with 
the numerical simulation of the Hamiltonian dynamics using MPS are 
presented in Fig. 4. Although qualitatively similar, the datasets display 
clear discrepancies. The most important one is a systematic offset between 
the extracted values of μ from the experiment, finite-size scaling analysis 
and time-dependent MPS simulations. Although it can be potentially 
attributed to experimental imperfections and subtle differences between 
the experimental system and the model used for the numerical simula-
tions (see Methods), the disagreement of the MPS simulation with both 
the experimental results and the finite-size scaling analyses of equilibrium 
properties highlights the difficulty in approximately modelling complex 
nonequilibrium dynamics of many-body systems.

Our observations demonstrate a new approach for investigating 
quantum critical phenomena and provide insights into the phys-
ics of exotic QPTs that do not lend themselves to simple theoretical 
analyses. Increasing the system size, improving the atomic coherence 
properties and exploring wider parameter regimes may allow more 
precise probing of exotic QPTs into both ordered and incommensurate 
phases11,24,25,27 in various models. In particular, the present approach 
is well suited for simulations of lattice gauge theories13. Whereas the 
system studied here is formally equivalent to a quantum link model on 
a ladder geometry30, two- and three-dimensional systems realized using 
novel trapping techniques31,32 can be used to simulate a wide variety of 
non-trivial lattice gauge models12. Finally, the methods demonstrated 
in this work can be used to effectively encode and explore solutions to 
computationally difficult combinatorial optimization problems, such 
as finding the maximum independent set33. Detailed understanding of 

quantum dynamics in such systems might have direct application to 
exploring quantum speedup in both adiabatic and dynamical quantum 
optimization algorithms14.
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Methods
Rydberg array preparation. The experiment uses an acousto-optic deflector to 
generate multiple optical tweezers, which are loaded probabilistically from a cold 
gas of 87Rb atoms in a magneto-optical trap. Each tweezer can be loaded with up 
to a single atom. Once the cloud is dispersed, a fluorescence image, similar to the 
ones shown in Fig. 2a, is taken to identify loaded traps. The traps are then rear-
ranged to generate a defect-free regular array of 51 atoms that are evenly separated 
by distance34 a.

We define our spin Hamiltonian according to two pseudospin-1/2 states. The 
first is a ground-state hyperfine sublevel, ∣ ⟩ ∣ ⟩= = = −/g S F m5 , 2, 2F1 2 , and the 
second is the interacting Rydberg state ∣ ⟩ ∣ ⟩= = / = − /r S J m70 , 1 2, 1 2J , where F, 
mF and J, mJ are the hyperfine and total angular momentum quantum numbers, 
respectively. These two states are coupled by a two-photon process via the inter-
mediate state ∣ ⟩ ∣ ⟩= = = −/e P F m6 , 3, 3F3 2 . The two lasers operate at wavelengths 
of 420 nm for the lower transition and 1,013 nm for the upper transition.

The 420-nm laser is a frequency-doubled titanium–sapphire laser (SolsTiS 4000 
PSX F by M Squared) locked to an optical reference cavity (ATF- 6010-4 from 
Stable Laser Systems). The 1,013-nm laser is an external-cavity diode laser (CEL002 
by MOGLabs) that is locked to the same reference cavity. The light transmitted 
through the cavity is used to injection-lock another 1,013-nm laser diode, which 
is then amplified by a tapered amplifier35. Both beams are focused along the array 
axis (aligned with the quantization axis) to drive σ− and σ+ transitions for the 
420-nm and 1,013-nm beams, respectively.
Pulse generation. We modulate the 420-nm Rydberg laser with an acousto-optic 
modulator (AOM) driven by an arbitrary waveform generator (AWG; M4i.6631-x8 
by Spectrum Instrumentation). For each experiment, we program a waveform with 
varying amplitudes, frequencies and phases in the time domain into the AWG, 
which is then transmitted to the AOM through a high-power radiofrequency 
amplifier (ZHL-1-2W+ by Mini-Circuits).

The nonlinear AOM response to changes in amplitude and frequency poses a 
technical challenge. The deflection efficiency is not proportional to the waveform 
amplitude, and large changes in the latter lead to variations in the former. These 
effects lead to distortions in the pulse shape. We apply feed-forward corrections to 
the amplitude to match the output intensity to the desired waveform amplitude, as 
well as to compensate for the variations with frequency.
Pulse parameters. All pulses begin by turning on the value of Ω linearly over 1 μs 
at a fixed initial detuning Δ0. We select our initial detuning to be as close to the 
critical point as possible and subject to the constraint that the initial turn-on is still 
fully adiabatic. We identify this detuning experimentally by ramping Ω on and 
then off for various fixed detunings. In the adiabatic case, all the atoms should 
return to ∣ ⟩g . We therefore select the detuning closest to resonance that shows no 
excess excitation at the end of the pulse. For a typical measurement in the Z2 
regime, we select Δ0 = −2.5 MHz (Extended Data Fig. 1).

The final detunings of the sweeps are chosen in most cases to cross the tip of the 
corresponding phase boundary. In some cases in which the interaction strength 
is on the border between two phases, we do not fully cross over the boundary 
(Extended Data Fig. 2a).

The power-law scaling behaviour of the correlation length can be limited owing 
to strong nonadiabaticity far from the critical point, where the behaviour of the 
system is susceptible to microscopic details and is expected to deviate from uni-
versal theories, limiting the speed of the sweeps across the phase transition. At the 
same time, slow sweeps are more susceptible to decoherence, both because of the 
longer pulse time window and because the system remains closer to the ground 
state near the critical point and the growing quantum correlations are increasingly 
sensitive to environmental noise. To determine the range of rates for which QKZM 
scaling can be observed, we perform a sweep into each of the ordered phases at a 
wide range of sweep speeds s. We fit the correlation lengths for each parameter, 
discarding all the instances in which the correlation length is smaller than the size 
of the blockade radius, with a model that accounts for incoherent processes as 
saturation in the final size of the correlation length, namely:

ξ
ξ

ξ
=







/ ≤

/ >

μ

μs
s s s s

s s s s
( )

( )

( )
(3)0 0 c

0 0 c c

From this fit, we set smin > sc and find smax such that ξ(smax) > Rb (an example is 
shown in Extended Data Fig. 3). In this way, we determine the sweep parameters 
for the different values of the interaction strength (see Extended Data Table 1).
Numerical computation of the phase diagram. The quantum critical points 
along the phase boundary on the phase diagram presented in the main text were 
obtained using both finite- and infinite-system density-matrix renormalization 
group (DMRG) algorithms36–41. The filled coloured regions in Fig. 1c are not the 
result of numerical simulations and only show the expected shape of the phases 
approximately. In this section, we describe the details of the DMRG calculations.

For the infinite-system DMRG (iDMRG), we generally follow the method sum-
marized in ref. 42, in which translationally invariant matrix product states (iMPS) 
are used as variational ansatze for ground-state wavefunctions. Our Hamiltonian 
with long-range interactions is encoded using matrix product operator representa-
tions, where 1/r6-decaying interactions are approximated by a linear combination 
of four exponentials:

∑≈
=r

c x1 (4)
i

i6
1

4

i
r

with (c1, c2, c3, c4) = (170.55, 1.29, 0.0252, 0.000279) and (x1, x2, x3, x4) = (0.0051
9, 0.0835, 0.279, 0.565)43. The resulting function provides an excellent approxima-
tion with relative error less than 10−5 (Extended Data Fig. 4). This accuracy implies 
that even with the strongest interaction strength probed in our experiments 
(Rb ≈ 3.5), the maximum correction, �/ − ∑ π ×=V r c x(1 ) (2 ) 36kHzi0

6
i i

r
1

4 , is 
much weaker than the smallest energy scale that can be probed within our exper-
imental timescales.

Our phase diagram involves quantum phases that spontaneously break spatial 
translation symmetry. Hence, it is important that the number of spins in a trans-
lationally invariant unit cell of our iMPS ansatz must be compatible with the bro-
ken spatial symmetry. We use two or six spins as a unit cell to probe phase 
transitions from disordered to Z2-ordered or Z3-ordered phases, respectively. 
Incommensurate phases or onset of spatial symmetry breaking that is not compat-
ible with the number of spins per unit cell can be identified by oscillatory behaviour 
of wavefunction overlaps or energy densities over iterations.

To obtain the ground-state wavefunction, we iteratively optimize iMPS tensors 
until the (local) overlap between wavefunctions from two consecutive optimization 
steps approaches unity up to a small error ε. As convergence criteria, we require 
that either ε ≤ 10−8 or ε is limited by truncation errors arising from a finite bond 
dimension42, D. We use a wide range of bond dimensions up to D = 200, depending 
on the quantity of interest to be computed and on the convergence of the wave-
functions. For example, computing the ground-state energy density is relatively 
insensitive to bond dimensions, whereas extracting correlation lengths near the 
critical point requires a substantially larger D.

We thus extract the phase boundaries from the energy density. Specifically, we use 
iDMRG to extract the ground-state energy density E along a line in the parameter 
space, (Rb/a, Δ/Ω), and compute its second derivative along the line. When crossing 
a QPT, the second-order derivative of the energy density exhibits a sharp feature. For 
example, Extended Data Fig. 2b shows the numerically computed energy densities 
per unit cell (six spins) as a function of Rb/a ∈ [1.75, 2.25] for a fixed Δ/Ω = 2 with 
D = 10. We find clear cusps at Rb/a ≈ 1.86 and 2.18, corresponding to critical points 
from Z2-ordered to disordered and to Z3-ordered phases. Similar procedures along 
different lines lead to the phase diagram in Extended Data Fig. 2a and in Fig. 1c.

These phase boundaries are also reproduced using finite-system DMRG44,45 
with a bond dimension of up to D = 60 for a chain of L = 51 atoms and open 
boundary conditions. The first three energy levels are individually targeted, which 
in turn gives us access to the energy gap. The closing of the gap outlines well- 
defined lobes in the phase diagram, the boundaries of which overlap well with the 
points extracted previously with iDMRG (Extended Data Fig. 5).

A few remarks are in order. First, it has been previously discussed that the  
Z3-ordered phase may be interfacing incommensurate phases24. However, we do 
not find any evidence of incommensurate phases between Z2 and Z3 phases with 
up to Δ/Ω = 12 within our numerical precision. The nature of the direct transition 
from disordered to Z3-ordered phases is discussed in refs 25–27. Second, we have 
not explicitly identified the phase transition between disordered to Z4-ordered 
phases. This is because our choices of a unit cell (two or six spins) are not compat-
ible with Z4-ordered wavefunctions. Instead, the boundary of the disordered phase 
for Rb/a > 3 (yellow diamonds in Extended Data Fig. 2a) has been extracted from 
the convergence of the iDMRG algorithm; as Δ/Ω increases with a fixed Rb/a, the 
yellow diamonds in Extended Data Fig. 2a indicate the points at which the iDMRG 
algorithm ceases to converge and instead exhibits oscillatory behaviours. Our 
method does not distinguish whether this is due to the onset of the Z4-ordered 
phase or to a gapless incommensurate phase.
Extraction and scaling of correlation length. From the fluorescence images 
obtained at the end of an experimental sequence, we calculate the two-dimensional 
Rydberg density–density correlation map:

= −G i j n n n n( , ) (5)i j i j

To minimize boundary effects, we disregard eight sites from each edge. From 
the remaining bulk correlations, we average out this map over diagonal lines of 
constant |i − j| to obtain the Rydberg density–density correlation described in 
equation (2) (Extended Data Fig. 6). The uncertainties on the values of G(r) are 
found via jackknife analysis.
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Two different approaches are used to extract a characteristic length from such 
correlations. For transitions into ZN-ordered states (Fig. 4), we perform a least-
squares fit to the data with the model function:

= ξ− /G r A G rˆ( ) e ˆ ( ) (6)r
N gs

where A is the amplitude at r = 0, ξ is the correlation length and G rˆ ( )N gs is the ideal 
correlation function at integer values of r for the corresponding ZN-ordered state, 
with a peak every N sites:

= π /

= π /
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The range of distances used for all fits is 0 < r ≤ 20, where the cutoff at 20 sites 
is used to avoid any potential finite-size effects of the system.

In addition to the procedure described above, for Z2-ordered states it is possible 
to extract a correlation length by fitting an exponential decay to the modulus of 
the correlation function, as is done in Fig. 2. This method enables the determina-
tion of the correlation length in a way that is less susceptible to systematic effects 
arising from inversions of the alternating pattern, as observed in Fig. 3a. However, 
this method cannot be applied to ZN-ordered states for N > 2, necessitating the 
use of a more general approach, such as the function G rˆ( ) defined above. Whereas 
the scaling exponents extracted using both of these methods for the Z2-ordered-
state data are consistent within error bars, G rˆ( ) is used to obtain all exponents in 
Fig. 4c.

To extract the most likely scaling exponent μ at a given interaction, we fit the 
data with a power law

ξ ξ= / μ−s s( ) (8)0 0

where s is the detuning sweep rate.
ZN  domain density. In the fluorescence images obtained at the end of each exper-
imental sequence, we identify the loss of an atom to a Rydberg excitation. In this 
way, we can directly count the number of instances of two lost atoms separated by 
N sites, with every site in between containing an atom. To extract the data for 
Fig. 4b, we disregard the first eight sites from the edges and count the instances in 
which both ends of the N atom chain are within the bulk, fN. The relative proba-
bility for two lost atoms separated by N sites is given by:

=
×

∑ ×>

p
N f

i f( )
(9)N

N

i i0

Unlike G(r), pN is susceptible to detection infidelity21,35.
Length rescaling of correlation functions. In Fig. 3, we use the normalized meas-
ured density–density correlation functions, G r( )

A i
1

i
, and rescale the length r by the 

QKZM length-scaling exponent found via the scaling analysis of the correlation 
length, r → (s/s0)μr.
Finite-time scaling. The length-scaling exponent, μ, found experimentally sets 
constraints to the possible combinations of the critical exponents z and ν at a given 
interaction strength. To estimate, or qualitatively test, the possible values of z and 
ν, given the constraints set by μ, we make use of the fact that in the critical region, 
all system properties scale in a universal way. The QKZM predicts a universal 
scaling of time with a scaling exponent of zν/(1 + zν), in addition to the scaling of 
length46 with μ = ν/(1 + zν). In the experiment, the control parameter used to 
cross the QPT is δ = Δ−Δc, where Δc is the value of the detuning at the critical 
point and can be estimated through numerical simulations (see section ‘Numerical 
computation of the phase diagram’). Near the critical point, the control parameter 
varies in time as δ(t) = st, leading to a universal scaling of δ(s) = δ0(s0/s)κ, where 
κ = −1/(1 + zν). Using the data shown in Fig. 2 for the correlation length growth 
across the transition into the Z2-ordered phase, we can apply the transformation 
ξ → ξ(s/s0)μ and δ → δ(s/s0)κ to observe how well the data collapse to a universal 
shape. Extended Data Fig. 7 shows that these data are consistent with having crit-
ical exponents z = 1 ≈ ν, as expected for the Ising universality class.
Numerical simulation of Kibble–Zurek dynamics. We model the dynamics of 
the system numerically using MPS and use a variant of a time-evolving block 
decimation algorithm to propagate the state. We use a state update that allows us 
to include exactly the effect of the interaction between atoms that are separated by 
less than =ℓ 7 sites. Interactions beyond this range are neglected. To this end, we 
use a trotterization for the unitary that propagates the system from a time tk to a 
time tk+1 = tk + Δt as

∏→ ≈ − Δ+
=

−
U t t ih t t( ) exp( ( ) ) (10)k k
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for 1 < p < N − ℓ, and h1 and hN−ℓ are similar but with appropriately adjusted 
coefficients.

We simulate the evolution according to the same pulse shape as that applied in 
the experiment, with a time step of Δt = 0.15 ns and a bond dimension of 128. 
A comparison between the numerically simulated dynamics and the experimen-
tal results for different interaction strengths is shown in Fig. 4. As described in 
section ‘Extraction and scaling of correlation length’, deviations of the individual 
correlation functions from an exponentially decaying period-N density wave lead 
to systematic effects that dominate the uncertainty in the determination of the 
values presented in Fig. 4b. The comparison between experimental and numerical 
results is susceptible to multiple effects, including finite-size effects47, accuracy of 
the approximate numerical methods used, experimental imperfections and data 
fitting, which contribute to the observed discrepancy.
Chiral clock models. QPTs in the Rydberg Hamiltonian (equation (1)) involving 
breaking of the Zn (n ≥ 3) translational symmetry along one spatial direction are 
expected to be in the universality class of the extensively studied Zn CCMs10,11,28,48–51.  
To elucidate this connection, let us focus on n = 3 and consider the case when 
V1 ≫ |Ω|, |Δ|; that is, nearest-neighbour interactions are strong enough to effec-
tively preclude two neighbouring atoms from simultaneously being in the Rydberg 
state. Because van der Waals interactions decay rapidly as Vx = C6/x6, we neglect 
couplings beyond the third-nearest neighbour by approximating Vx ≈ 0 for x ≥ 3, 
leading to a truncated model of the form:

∣ ⟩ ⟨ ∣ ∣ ⟩ ⟨ ∣∑
Ω Δ= + − +

=
+H g r r g n V n n

2
( ) (12)

i

N

i i i i i i iRyd
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2 2

supplemented with the constraint nini+1 = 0.
The Hamiltonian in equation (12) can be mapped to a system of hard-core 

bosons, in which no more than one boson can occupy a single site. This follows 
upon identifying the state in which the atom at site i is in the internal state ∣ ⟩r  ∣ ⟩g( ) 
with the presence (absence) of a boson. By defining the bosonic annihilation and 
number operators, bi and =n b bi ii

† , respectively, we obtain

∑
Ω Δ= + − +

=
+H b b n V n n

2
( ) (13)

i

N

i i i ib
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2 2i
†

together with nini+1 = 0. This model (often referred to as the U–V model) was 
shown by refs 24,52 to exhibit a phase transition in the universality class of the 
three-state CCM, over a set of parameters.

The Zn CCM is a simple extension of the transverse-field Ising model, in which 
each spin is promoted to have n > 2 states. However, instead of extending the 
symmetry from Z2 to Sn, which would result in the n-state Potts model53, the 
interactions are constructed to be invariant under Zn transformations. With n = 3, 
the three-state CCM is defined by the Hamiltonian49,51

∑ ∑τ σ σ= − − + . .φ θ

=

−

=

−

+
−H f Je e h c (14)
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acting on a one-dimensional chain of N spins. The three-state spin operators τi and 
σi, which can be represented as
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act locally on site i, and each satisfy

τ σ σ τ ωτ σ ω= = = ≡ π /i1, ; exp(2 3) (16)3 3

Here, φ and θ define two chiral interaction phases: to describe spatially ordered 
phases, we need φ = 0, where time reversal and spatial parity are both symmetries 
of the Hamiltonian but a purely spatial chirality is still present. We note that HRyd 
does not break time-reversal symmetry, necessitating the choice of φ = 0 in the 
quantum clock model (equation (14)). However, with both φ and θ non-zero, 
time-reversal and spatial-parity (inversion) symmetries are individually broken 
but their product is preserved.

As depicted in Fig. 4a, a generic state in the Hilbert space of the Z3 CCM can 
be mapped to one of three states of a clock according to the eigenvalue 1,ω or ω2 
of the operator σ at each site. Consequently, there can be two domain walls in the 
system that differ in their energies, depending on whether the clock rotates clock-
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wise or anticlockwise upon crossing the wall. With φ = 0 and θ ≠ 0, these have 
different energies, 2Jsin[(π/6)–θ] and 2Jsin[(π/6)+θ], and are thus inequivalent, 
leading to a chirality in the system, which is absent for φ = θ = 0.

On setting both φ = θ = 0, Hccm reduces to the Hamiltonian for the three-state 
Potts model, which possesses a larger symmetry, S3; the concomitant order– 
disorder phase transition has critical exponents z = 1, ν = 5/653,54,55 and, accord-
ingly, μ ≈ 0.45. We note that these exponents are fundamentally distinct from those 
of the Z3 CCM; namely, z ≈ 1.33 and ν ≈ 0.71, yielding μCCM ≈ 0.37. The Rydberg 
Hamiltonian described in the main text contains a point along the phase boundary 
for which the condition of φ = θ = 0 is fulfilled, and with fine-tuned pulses it may 
be possible to explore the critical properties of the three-state Potts model.

For n = 4, the transitions of both the Potts and the achiral clock model are in the 
Ashkin–Teller universality class56,57. The critical exponents of the four-state Potts 
model are z = 1 and ν = 2/3 (implying μ = 0.40), whereas the four-state achiral 
clock model is equivalent to two uncoupled Ising systems with z = 1 and ν = 1. 
With a non-zero chirality, however, it is believed that there is no direct transition 
from the ordered to the disordered phase in the four-state CCM, because an inter-
mediate gapless incommensurate phase always intervenes11,28,58.

Data availability
The data that support the findings of this study are available from the correspond-
ing author on reasonable request.
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Extended Data Fig. 1 | Determination of initial detuning Δ0. At 
fixed laser detuning, we linearly ramp Ω on and then off (1 μs each). We 
identify the negative detuning closest to resonance for which the system 
is fully adiabatic, such that the excitation probability at the end of the 
pulse returns to the minimum. From this typical measurement, taken at 
Rb/a = 1.59, we set Δ0 = −2.5 MHz. Error bars denote 68% confidence 
intervals.
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Extended Data Fig. 2 | Numerically extracted phase diagram with 
trajectories for QKZM measurements. a, Green (purple) markers 
indicate the phase boundary points between disordered and Z2  
(Z3)-ordered phases. Yellow diamonds indicate the boundaries of the 
disordered phase (as approached from increasing Δ with fixed Ω and 
Rb/a). We have not verified whether these transitions are directly from 
disordered to Z4-ordered phases or involve incommensurate phases. Each 
grey dashed line corresponds to the trajectory across phase space used to 

probe for scaling behaviour of the correlation length growth. The 
horizontal section of each trace corresponds to the detuning sweep at a 
constant Rabi frequency, whereas the curved sections correspond to pulse 
turn-off at a fixed value of detuning. The total duration of the detuning 
sweep is varied to control the rate of transition across the phase 
boundaries, but the time to turn the field off is not. b, Numerically 
obtained energy densities E  along the red solid line indicated in a. The 
second-order derivative of E  shows clear cusps at two critical points.
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Extended Data Fig. 3 | Scaling window. Determination of the window of 
rates for which scaling is valid for the transition into the Z3-ordered phase. 
The grey solid lines represent the result of the fitted model, which grows as 
a power law until it saturates. The dashed horizontal line marks the size of 
the blockade radius. All of the rates used in the experiment are larger than 
the values at which the dashed and solid lines intersect and smaller than 
the point at which the model saturates. The error bars denote one standard 
deviation of the power-law fit.
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Extended Data Fig. 4 | Approximation of interaction potential. 
Comparison between the exact power-law decay 1/r6 and its 
approximation using a linear combination of four exponentials. The two 
functions agree with each other until their relative strength decreases  
to 10−6.
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Extended Data Fig. 5 | Energy gap. Calculated gap between ground and 
first excited state using DMRG calculations. Green (purple) circles indicate 
the extracted quantum critical points separating the disordered from the 
Z2 (Z3)-ordered phase.
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Extended Data Fig. 6 | Rydberg density–density correlations. Full 
density–density correlation map for sites i and j after a slow sweep into the 
Z2-ordered phase. The orange square marks the bulk region used for 
analysis.
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Extended Data Fig. 7 | Finite-size scaling across QPT into the Z2-ordered 
phase. a, Experimentally measured growth of the correlation length across 
the phase transition for different sweep speeds. The error bars denote one 
standard deviation of the power-law fit. b, Verification of critical 
exponents across the QPT into the Z2-ordered phase by rescaling the 
control parameter and spatial correlations. Using the experimentally 
extracted value of the QKZM length-scaling exponent, μ = 0.52, and 
setting the dynamical critical exponent to the Ising prediction, z = 1, it is 
observed that the data in a fall along a smooth function.
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Extended Data Table 1 | Pulse parameters for QKZM sweeps

For different blockade radii (RB/a) we list the initial and final detunings Δ0 and Δf of the sweeps 
and the minimum (smin) and maximum (smax) sweep speeds applied.
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