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In this Supplementary Information, we first provide a
derivation of the approximate eight-atom ordered ground
state. Next, we discuss how the unsupervised RBM
learning process is carried out on experimental datasets,
and demonstrate how the networks generalize from the
finite datasets used in training. We also detail a regu-
larization method used to mitigate the effect of measure-
ment errors in the training set and provide numerical
evidence that this technique significantly improves the
fidelity of state reconstruction from noisy data. Finally,
we examine how intrinsic decoherence processes impact
the quality of the pure-state reconstruction procedure.
An appendix provides proofs of two bounds regarding the
fidelity and entanglement properties of reconstructions.

I. APPROXIMATE EIGHT-ATOM GROUND
STATE

The full Rydberg Hamiltonian is

Ĥ(Ω,∆) = −∆

N∑
i=1

n̂i −
Ω

2

N∑
i=1

σ̂xi +
∑
i<j

Vnn
|i− j|6 n̂in̂j

(1)

At the end of the experimental sweep, the Hamiltonian
has a positive detuning and a small transverse field: ∆ >
0, Vnn � ∆ � |Ω|; furthermore, interactions between
sites separated by more than two lattice spacings may be
neglected, as they are weak compared to the frequencies
which characterize the sweep profile. In this regime the
four-excitation states

|e1〉 = |r g r g g r g r〉 (2)
|e2〉 = |r g g r g r g r〉 (3)
|e3〉 = |r g r g r g g r〉 (4)

are degenerate under the classical part of the Hamilto-
nian −∆

∑N
i=1 n̂i +

∑
i<j

Vnn
|i−j|6 n̂in̂j . The ground state

lies in the subspace spanned by these three states: adding

or removing an excitation requires an energy penalty pro-
portional to Vnn or ∆ respectively. This degeneracy is
lifted by a nonzero transverse field, which couples the
blockaded states at second order in Ω through the three-
excitation subspace. Using perturbation theory, an ef-
fective Hamiltonian [1] Heff may be constructed for the
blockaded subspace, whose nonzero matrix elements are
given by

〈e1|Heff|e2〉 = 〈e1|Heff|e3〉 = −Ω2

4∆
(5)

The corresponding ground state is |Ψ〉 = 1√
2
|e1〉 +

1
2 (|e2〉+ |e3〉).

II. RECONSTRUCTION METHODS

A. Note on terminology

Below we discuss strategies for training on experimen-
tal data which has been corrupted by a fixed, known
noise process. σ will denote the variables prior to cor-
ruption by measurement errors, while τ will denote those
which have been subjected to the noise channel – that
is, for a fixed true value σ, the noisy outputs are dis-
tributed according to p(τ |σ). In our experiment, τ are
the only accessible variables, which yield the bitstrings
recorded in each dataset. A model with parameters
λ specifies a distribution pλ(σ) over the uncorrupted
variables σ, and a corresponding corrupted distribution
p̃λ(τ ) =

∑
σ p(τ |σ)pλ(σ).

B. Standard RBM training method

The standard training method involves fitting the
RBM distribution pλ(σ) = 1

Zλ

∑
h e

h>Wσ+b·σ+c·h di-
rectly to the experimental datasets; in other words, it
assumes a noise-free source of data:

p(τ |σ) = δτ ,σ (6)
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The optimal parameters λ = {W,b, c} for which the
RBM best reproduces the measurement data are found
by minimizing the negative log-likelihood

Lλ = − 1

|D|
∑
τ∈D

log pλ(τ ) (7)

of the RBM distribution pλ averaged over the dataset D
(|D| denotes the size of the dataset). The gradient of the
log-likelihood cost function with respect to the trainable
parameters λ may be written

∇λLλ = 〈∇λEeff(σ)〉pλ(σ) −
1

|D|
∑
τ∈D
∇λEeff(τ ) (8)

where 〈·〉pλ(σ) denotes the expectation value with respect
to the distribution pλ(σ), and the effective energies

Eeff(σ) = b · σ +
∑
j

log
(
1 + eWjiσi+cj

)
(9)

are defined by pλ(σ) = 1
Zλ
eEeff(σ).

The second term in the cost function gradient (8) is
estimated using a batch of samples τi of size M drawn
from the training set D:

1

|D|
∑
τ∈D
∇λEeff(τ ) ≈ 1

M

M∑
i=1

∇λEeff(τi) (10)

Exact computation of the expectation value with respect
to pλ(σ) requires summing over a number of configu-
rations which is exponential in the system size, and is
therefore not tractable. It can also be approximated by
drawing M samples σi distributed according to pλ(σ)
and using the estimator

〈∇λEeff(σ)〉pλ(σ) ≈
1

M

M∑
i=1

∇λEeff(σi) (11)

In principle, samples which obey the model distribution
pλ(σ) can be generated by block Gibbs sampling [2],
which involves repeatedly sampling from the conditional
distributions pλ(σ|h) and pλ(h|σ). Because of the re-
stricted nature of the RBM graph – there are no intra-
layer connections – the conditional distributions factorize
and each unit in a given layer can be exactly sampled si-
multaneously. In pseudocode, starting from a ‘seed’ vis-
ible state σ1, the Gibbs sampling algorithm is:

for i in [1, 2, ..., k] do
Sample hi from pλ(h|σi)
Sample σi+1 from pλ(σ|hi)

end for
– the output of the algorithm is the visible state σk+1,
which will obey the model distribution pλ(σ) for a suffi-
ciently large number of sampling steps. In practice, the
contrastive divergence algorithm [3] is applied, where the

visible state is seeded with samples from the training set,
and only a small number of sampling steps k is used.
In practice, moderate values k ∼ 10 are sufficient for
training with stochastic gradient descent. Additional in-
formation about the RBM and its training can be found
in Ref. [4]. An open-source software library for RBM re-
construction of generic wavefunctions is also available [5].

C. Noise-regularized training method

In the case where the training set is known to be cor-
rupted by a noise process p(τ |σ), our goal is to learn a
model pλ(σ) whose corresponding noise-corrupted distri-
bution p̃λ(τ ) fits the observed data. We therefore define
the corresponding log-likelihood cost function

Lλ = − 1

|D|
∑
τ∈D

log p̃λ(τ ) (12)

and train the network to minimize it on each dataset.
The cost gradient takes a form nearly identical to that of
the standard training method (8),

∇λLλ = 〈∇λEeff(σ)〉pλ(σ) −
1

|D|
∑
τ∈D
〈∇λEeff(σ)〉p̃λ(σ|τ )

(13)

The second term in the gradient update step is now com-
puted not directly from the training set samples τ ∈ D,
but rather from the Bayesian posterior distribution

p̃λ(σ|τ ) =
p(τ |σ)pλ(σ)

p̃λ(τ )
(14)

which the RBM assigns to visible states σ, given an ob-
servation τ in the noisy training set.

This alteration to the cost gradient may be viewed as a
regularization of the training based on prior knowledge of
the sampling process. Regularization in machine learning
generally refers to techniques for improving the general-
ization performance of a model trained on a particular
data set to new datasets drawn from the ‘ground truth’
source. A typical regularization scheme like weight de-
cay does not specify a priori how the in-sample and true
distributions differ, and therefore typically requires some
sort of validation process – testing the model on held-
out data – to select good hyperparameters. In contrast,
our regularization method is applied in a context where
all accessible datasets are corrupted by the same noise
process. This makes validation as a means of selecting
regularization hyperparameters impossible – but if the
noise process is known, this is no obstacle as there are no
free hyperparameters to select.

In applying equation (13) to the unsupervised train-
ing of an RBM, both contributions to the gradient now
require computation of expectation values over marginal-
ized distributions pλ(σ), p̃λ(σ|τ ) of the RBM, and are
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Figure 1. Three layer model. Schematic for how noise-
corrupted data is modeled using a three-layer graph. The
upper two layers h,σ constitute an RBM with trainable pa-
rameters λ, which defines a distribution pλ(σ) over the uncor-
rupted variables σ upon tracing out the hidden units h. The
corrupted distribution is obtained through the noise process
p(τ |σ) as p̃λ(τ ). The noise process is indicated here by ar-
rows which link uncorrupted and corrupted variables at each
site.

therefore intractable to compute exactly. As in the noise-
free training case, this problem may be circumvented us-
ing the contrastive divergence method: the first term is
estimated by repeated sampling from the conditional dis-
tributions pλ(σ|h), pλ(h|σ), while the second uses the
same alternating sampling from the ‘data-clamped’ dis-
tributions p̃λ(σ|h, τ ), p̃λ(h|σ, τ ) = pλ(h|σ). As noted
above, pλ(σ|h), pλ(h|σ) are both efficiently computable
due to the restricted structure of the RBM layers σ,h.
Similarly, p̃λ(σ|h, τ ) is efficiently computable if the error
probabilities satisfy a weaker condition, namely factoriz-
ing over the uncorrupted variables:

p(τ |σ) =
∏
i

p(τ |σi) (15)

In this case, the clamped distribution may be computed
explicitly as

p̃λ(σ|τ ,h) =
∏
i

p(τ |σi)pλ(σi|h)∑
σ′
i=0,1 p(τ |σ′i)pλ(σ′i|h)

(16)

=
∏
i

p̃λ(σi|τ ,h), (17)

amenable to efficient block-Gibbs sampling.

Fig. 1 provides an intuitive way to understand the noise
regularization – the corrupted variables τ may be in-
cluded as a third noise layer appended to the standard,
two-layer RBM graph, with conditional probabilities de-
pending on the σ layer only. These can be interpreted as
effective biases for the noise layer, which depend on the
uncorrupted variables – for example, the independent bit-
flip errors used to model our Rydberg experiment may be

written as

p(τ |σ) =
1

Z̃
eb̃σ·σ+b̃τ ·τ+W̃σ·τ

W̃ = log
p(1|1)p(0|0)

p(1|0)p(0|1)

b̃σ,i = log
p(0|1)

p(0|0)

b̃τ,i = log
p(1|0)

p(0|0)

For brevity, we will sometimes refer to RBMs trained
with this regularization as ‘three-layer’ machines, as op-
posed to their ‘two-layer’ counterparts trained in the
standard fashion. Similar graphical models known as
Deep Belief Nets [6] have previously been used for unsu-
pervised learning tasks, but with a different, layer-wise
training algorithm that does not incorporate prior infor-
mation; a gated RBM architecture similar to the three-
layer machine has also been applied to Gaussian noise
models in occluded images [7].

D. Sampling from trained RBMs

After an RBM has been trained, new configurations
of the uncorrupted variables {σ} can be drawn from
the distribution pλ(σ) using the block-Gibbs sampling
techniques discussed above. The expectation value of a
generic observable Ô in the state ψλ(σ) =

√
pλ(σ) can

then be approximated with a Monte Carlo average over
nmc samples:

〈Ô〉ψλ
=
∑
σ,σ′

ψλ(σ)〈σ|Ô|σ′〉ψλ(σ′) (18)

=
∑
σ

|ψλ(σ)|2
∑
σ′

〈σ|Ô|σ′〉ψλ(σ′)

ψλ(σ)
(19)

:= 〈OL(σ)〉pλ(σ) (20)

' n−1mc

nmc∑
k=1

OL(σk) (21)

where the “local estimate” of the observable is defined to
be OL(σ) =

∑
σ′〈σ|Ô|σ′〉ψλ(σ′)

ψλ(σ) . In the case of nontriv-
ial noise processes, to sample from the corrupted distribu-
tion p̃λ(τ ) one may first generate an uncorrupted batch
{σ} of data and then sample once from the conditional
distribution p(τ |σ) for each uncorrupted configuration.

For an RBM with N visible and Nh hidden units, the
times for training and Monte Carlo observable estimation
scale as O(NNh), or in terms of the model complexity
α = Nh/N , as O(αN2); note that the number of visible
units is fixed by the system size. A universal approxima-
tion theorem [8] guarantees that RBMs can represent any
distribution over binary variables, although an exponen-
tially large number of hidden units may be required in
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general. However, many quantum states relevant to ex-
periment, such as ground states of paradigmatic Hamil-
tonians and some matrix product states, have been found
to admit efficient descriptions [9–13]. In the present work
with eight atoms, the Hilbert space is small enough that
all amplitudes and expectation values can be computed
exactly, providing a valuable check on our procedure.
Such a benchmark quickly becomes impossible with cur-
rent classical hardware when the number of atoms ap-
proaches ∼ 20 for pure states, and at even smaller chain
lengths for the exact evaluation of non-pure states.

III. TRAINING DETAILS

A. Methods

The reconstructions presented in this work were
trained using the three-layer scheme detailed above on
experimental datasets of N ≈ 3000 samples each. Train-
ing was performed using stochastic gradient descent with
a decayed learning rate, the gradients being estimated via
contrastive divergence with k = 30 sampling steps. Since
the visible layers of our machines are relatively small, ex-
act computation of the negative-log-likelihood was possi-
ble on each set. Hyperparameters for training were there-
fore selected by cross-validation on a randomly chosen ex-
perimental set; the same hyperparameters were used in
training on all datasets. The reconstructions presented
in the text were trained on the full datasets; RBMs were
also trained on 90/10 splits of each dataset in order to
verify that the out-of-sample negative log likelihood did
not grow during training. Error bars on reconstructed
observables were computed from their variation across
these training subsets in the final epochs of training. We
found it beneficial to train each machine with the error
rates set to zero for the first epoch.

To check that the networks learned a consistent repre-
sentation of the experimental data, we performed a scal-
ing analysis of the number of hidden units Nh of the
RBM when training on experimental data. Increasing
the number of hidden units, we found convergence of the
observables and log-likelihood for Nh ∼ N (see Fig. 2 for
examples). The reconstructions presented in this work
used RBMs with Nh = 2N = 16.

B. Training on larger systems

As a test of the robustness of our reconstruction proce-
dure, we also trained RBMs on a second set of Rydberg
atom data sampled from a larger chain of N = 9 atoms.
The dynamics of this system is governed by a master
equation identical in structure to that used for modeling
the eight-atom data presented in the main text, but with
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∆ (MHz)
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x̄
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I 2
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)

nh=1
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nh=16
nh=20
nh=24

Figure 2. Examples of the scaling of observables with hid-
den layer size, for RBMs trained on experimental data. Top:
spatially averaged transverse field values. Bottom: the Renyi
mutual information at bond s = 3. Error bars are defined by
variation of reconstructed observables in the final epochs of
training.

slightly different detuning and Rabi frequency profiles,
and different effective decoherence rates.

Fig. 3 compares the results of this reconstruction to
predictions of the relevant Lindbladian model, as well as
experimental values where appropriate. Without alter-
ation of the training procedure, the RBMs reconstruct
quantum dynamics, as manifested in the transverse field
and mutual information, in good agreement with Lind-
bladian predictions. This is a key benefit conferred to the
experimentalist by the RBM reconstruction method. In-
deed, given previous knowledge regarding the properties
of the quantum state prepared in the experiment, RBM
reconstruction of experimentally inaccessible observables
allows for rapid and inexpensive detection of errors in
state preparation and manipulation.

IV. GENERALIZATION CAPABILITIES

A generative model is of little use if it merely mim-
ics the statistics of the training set. Successful machine
learning applications are built upon the ability to general-
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Figure 3. Some examples of observables reconstructed from
nine-atom data, plotted as a function of sweep time t. From
top to bottom: average transverse field x̄, Renyi mutual infor-
mation I2 corresponding to a partition at bond s = 3; aver-
aged nearest-neighbor correlations in the measurement basis
(including same noise model as in the main text). The ma-
chines were trained with the same hyperparameters as in the
eight-atom case, using Nh = 2N = 18 hidden units.

ize from a given dataset, extracting representations of the
data that capture relevant features of the ground truth
distribution from which it was sampled. This requires
some structure in the data for the machine to learn, and
the extent to which it succeeds in doing so depends upon
the architecture of the machine as well as the size of the
dataset.

For relatively small datasets such as those used in this
work, it is natural to wonder whether the apparatus of
machine learning is necessary at all. In particular, given
access to the frequency distribution (FD)

PFD(τ ) =
1

Ns

∑
τi∈D

δτ ,τi (22)

defined by a particular dataset D consisting of Ns sam-
ples, one may define a naive frequency distribution re-
construction of a pure state corresponding to the data,
which simply memorizes the training set:

|Ψ〉 =
∑
τ

√
PFD(τ )|τ 〉 (23)

The FD state model can be computed and stored in a
time linear in the size of the dataset, by building a lookup
table that associates each observed bitstring τ with its
empirical probability in the dataset, and assigning proba-
bility zero to all other bitstrings. Such a model may then
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Figure 4. Generalization from ground-state datasets: fidelity
improvements conferred by RBMs over frequency-distribution
reconstructions, for a selection of dataset sizes Ns. Note the
change in scale.

be used to produce Monte-Carlo estimates of desired ob-
servables, in the same fashion as for RBM states.

In general, the FD reconstruction approach can-
not scale to high-entropy distributions – if H2 is
the second-order Renyi entropy of the ground-truth
distribution PGT(τ ), the fidelity F (PFD, PGT) =∑
τ

√
PFD(τ )PGT(τ ) between the frequency distribution

and the ground truth obeys the inequality

F (PFD, PGT) ≤
√
Nse

−H2/4 (24)

– for a proof, see Section (VII). In particular, if the
measurement-basis entropy is proportional to the system
size – as is the case in even some very simple states, such
as a product state of spins not aligned with the measure-
ment basis – the frequency-distribution fidelity will de-
cay exponentially in system size. The ability to extract a
modest number of physically relevant features is therefore
essential for accurate state reconstruction from generic
datasets of realistic size. However, our eight-atom sys-
tem is small enough compared to the size of the datasets
(
√
Ns ∼ 2L) that the FD approach is not a priori infea-

sible.
To quantify the performance of RBM and FD recon-

structions in the small-system regime, we sampled syn-
thetic datasets (in the occupation number basis) of size
Ns up to 105 from ground states of the Rydberg Hamil-
tonian in equation (1), for a selection of system sizes
up to N = 16 atoms. Ground state wavefunctions
were computed using the QuSpin exact diagonalization
package [14]; the Hamiltonian parameters were constant
throughout and chosen to place the system near the phase
transition into Z2 state: Vnn = 30MHz, Ω = 2MHz,
∆ ≈ 1MHz. For each dataset, we computed the fidelity
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Figure 5. Dependence of model size on physical system size
(note the log scale). The solid line indicates the number of
parameters required to specify an RBM model with Nh = N .
The dashed lines indicate the number of parameters required
to build a lookup table for the FD model, for various dataset
sizes Ns.

FFD of the frequency distribution state onto the ground-
truth Rydberg wavefunction; an RBM with Nh = N
hidden units was then trained on the same dataset, and
its fidelity FRBM onto the true state was also recorded.
The RBMs were all trained with the hyperparameters de-
scribed in section III, but with k = 10 contrastive diver-
gence steps. Fig. 4 plots the resulting fidelities achieved
by both reconstructions as a function of system size –
RBMs of fixed complexity achieve significantly higher fi-
delities for large systems, with small improvements even
at N = 8.

Another issue of practical relevance is model size: given
a dataset D of a particular size Ns, how many parameters
are required to store each trained model? For the RBM,
the number of (real-valued) parameters required to spec-
ify the model completely is determined by the size of the
bias vectors and weight matrix, N · Nh + N + Nh, and
therefore quadratic in the system size for a fixed model
complexity Nh/N . For the FD model, the number of pa-
rameters is determined by the size of the lookup table,
i.e. the number of unique samples present in the dataset,
and therefore bounded above by the dataset size Ns.

In Fig. 5, the model sizes of the RBM and FD recon-
structions from Fig. 4 are compared as a function of sys-
tem size; for N & 8 atoms the RBMs are a significantly
more efficient (not to mention more accurate) description
of the quantum state.

Finally, we note that even for small systems, gener-
ative models provide an additional advantage in state
reconstruction from noisy data: in the presence of mea-
surement errors, the FD model is not representative of
the ground truth for any dataset size, and simply in-
verting the conditional probabilities will generally result
in unphysical prior distributions. Denoising methods
for cleaning noisy binary datasets prior to reconstruc-
tion [15–17] may be applied, but a model training step is

still required.

V. EFFECTS OF DECOHERENCE

For pure state reconstruction to be useful in near-term
quantum simulators, realistic decoherence processes must
be accounted for. Here, we provide a brief description of
the Lindbladian master equation used in our modeling
of the experiment, and discuss means of assessing the
quality of pure state reconstructions in the presence of
decoherence.

A. Master equation for the Rydberg machine

To account for decoherence processes quantitatively,
we have used a Lindblad model, described in detail in
Ref. [18], which includes two jump operators σ̃rgi =
|g〉〈r|, σ̃ggi = |g〉〈g| to represent decay and dephasing pro-
cesses acting on atom i. The time evolution of the full
state is given by the master equation

dρ̂

dt
= −i[Ĥ(Ω(t),∆(t)) + Ĥdis, ρ̂]

+

N∑
i=1

∑
t=rg,gg

γt

(
σ̃ti ρ̂ σ̃

t†
i −

1

2

{
σ̃t†i σ̃

t
i , ρ̂
}) (25)

where Ĥdis = −∑N
i=1 δin̂i is the static disorder Hamilto-

nian containing the Doppler shifts δi, and γt, t = rg, gg
are decoherence rates estimated from single-atom mea-
surements [18] as 1/γrg =80µs, 1/γgg =40µs respectively.
The Doppler shifts δi were assumed to be Gaussian-
distributed with an rms width of 2π · 43.5kHz. Direct
spontaneous decay processes from the Rydberg states,
which occur over longer timescales, were neglected. Nu-
merical solutions of the master equation (25) were per-
formed using QuTiP [19], and observables were averaged
over 100 disorder realizations {δi}. Uncertainties in ob-
servables were computed from the standard error of the
mean of these realizations. We note that the experiment
has additional loss mechanisms, as well as imperfections
in the laser sweep profile, which are not well character-
ized and not included in this Lindbladian model. We be-
lieve this accounts for the discrepancy with experimental
correlation functions noted in the main text.

This master equation predicts a substantial loss in pu-
rity Tr

[
ρ̂2
]
for states produced at the end of the sweep

(Fig. 6), whose detrimental effects on our pure-state re-
construction process we quantify below.
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Figure 6. Purity of the master equation solutions as a function
of sweep time t.

B. Reconstruction fidelities

To assess the quality of quantum state reconstruction,
we consider the fidelity between two states ρ̂, σ̂,

F (ρ̂, σ̂) = Tr
[√√

ρ̂σ̂
√
ρ̂

]
(26)

which reduces to the norm of the overlap in the case
where ρ̂, σ̂ are pure states. An ideal state reconstruction
σ̂ of a mixed state ρ̂ would yield F (ρ̂, σ̂) = 1. For pure
state reconstructions σ̂ = |ψλ〉〈ψλ|, this is not possible
if the true state ρ̂ is non-pure. However, one may still
seek an approximate reconstruction which reproduces the
local reduced density operators of ρ̂. In particular, spe-
cializing to the case of one-dimensional systems, we can
consider contiguous subsystems formed from s adjacent
sites, A(s)

i = {i, i+1, ..., i+s−1}. Given two density op-
erators ρ̂, σ̂ for the global system S of size N , the reduced
density operators which describe the subsystem in each
state are obtained by tracing out the rest of the chain,

ρ̂
(s)
i = TrS/A(s)

i
[ρ̂]

σ̂
(s)
i = TrS/A(s)

i
[σ̂]

Then we define a subsystem averaged fidelity as the spa-
tial average of the fidelity between these local operators,
over all subsystems of a particular size s:

Fs (ρ̂, σ̂) =
1

N + s− 1

N−s+1∑
i=1

F
(
ρ̂
(s)
i , σ̂

(s)
i

)
(27)

Fs (ρ̂, σ̂) is a measure of how well, on average, σ̂ is able
to reproduce the s-local physics of ρ̂.

To examine the quality of the RBM states ρ̂λ =
|ψλ〉〈ψλ| in reproducing local density operators, we
solved the master equation (25) for set of decay rates
γrg = αγexprg , γgg = αγexpgg , with γexprg , γ

exp
gg denoting our
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Figure 7. Average subsystem fidelities. For each sub-
ystem size s, the average subsystem fidelity between the re-
constructed state ρ̂λ and the state ρ̂ from which its training
data was sampled is plotted, for varying values of the de-
coherence rates, as quantified by the average Renyi entropy
s̄2 = − 1

N+s−1

∑N−s+1
i=1 logTr

(
ρ̂
(s)2
i

)
of the local reduced den-

sity operators. The data plotted are for states taken at the
end of the sweep, at ∆ = 10MHz. Open circles indicate the
fidelities obtained using the decoherence rates from the ex-
perimental model presented in the main text. The fidelity
behavior at other points in the sweep (not shown) is qualita-
tively similar.

estimates of the experimental values, and α a dimension-
less parameterization of the overall decoherence strength.
For each set of decoherence rates, the master equation
was solved and synthetic data sampled from the result-
ing mixed states. Pure state RBMs were trained on each
of these datasets, and the resulting averaged fidelities
Fs (ρ̂, ρ̂λ) were computed.

As a representative example, Fig. 7 shows how the
fidelities computed in the final state of the sweep vary as
a function of the average Renyi entropy s̄2 of subsystems
of a given size – one observes a roughly linear decay in
the average fidelity with the averaged entropy. These
numerical results suggest that pure state reconstruction
techniques should focus on few-body operators, where
the entropy build-up due to global decoherence process
is limited in proportion to the system size.
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Two layer (clean)
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Figure 8. Fidelity improvements from noise layer reg-
ularization. As a demonstration of the efficacy of noise layer
regularization, we plot the fidelity F (ρ̂λ, ρ̂) obtained between
the underlying state ρ̂ and the reconstruction ρ̂λ = |ψλ〉〈ψλ|,
when training on synthetic data subjected to measurement
errors (‘noisy’ data), as a function of detuning ∆. We com-
pare regularized training (red solid lines, ‘Three Layer’) with
unregularized training (green solid lines, ‘Two Layer’), for (a)
Data sampled from pure, positive Rydberg ground states, and
(b) Data sampled from the mixed states ρ̂ predicted by our
Lindbladian model. As a benchmark we plot in each case the
fidelity obtained by a two-layer RBM training on ‘clean’ data
without measurement errors (green dashed lines). The regu-
larized training leads to higher fidelities for all states sampled.
For some mixed states, it even exceeds the RBM trained on
clean data. This is because the pure state model is no longer
valid when the source state is mixed, and so the ‘optimal’
pure state as defined by fidelity is not necessarily the one
which best fits the training set.

VI. RECONSTRUCTION IMPROVEMENT
FROM NOISE LAYER REGULARIZATION

Numerical experiments have demonstrated that noise
layer regularization results in higher-fidelity pure state
reconstruction when training on uniformly noisy data.

Fig. 8 compares fidelities achieved by regularized and
unregularized RBMs, when trained on synthetic datasets
subjected to the bitflip error channel described in the
main text. The improvement is significant, especially in
the ordered phase, where global state purity is lowest.
It is important to note that in these experiments the
noise process is known ahead of time and built into the
three layer networks as in Fig. 1. We have also trained
three-layer machines using incorrect values of the error
rates on the same noisy synthetic data. Although the
fidelity performance varied somewhat, depending most
sensitively on p(0|1), the quality of the regularized re-
constructions is generally robust, and deep in the ordered
phase all three-layer machines exhibited higher fidelities
than their two layer counterparts on the corresponding

0.25

0.50

0.75

x̄

0.0

0.2

ḡ
x
x
(1

)

−10 −5 0 5 10

∆ (MHz)

0

1

I 2
(3

)

Lindblad state
2 layer (clean)

2 layer (noisy)

3 layer (noisy)

Figure 9. Observable reconstructions from synthetic
data. A comparison of two- and three-layer reconstructions
of the Lindbladian state when subjected to measurement er-
rors. From top to bottom: average transverse field, average
nearest-neighbor XX correlation, and Renyi mutual informa-
tion at bond 3. ‘noisy’ (‘clean’) indicates training data with
(without) measurement errors. Note the close agreement be-
tween the three layer machines trained on noisy data (blue
squares) and the two-layer machines trained on clean data .

datasets, for error rates with bounds set by single-atom
measurements [18]. Generically, of course, a sufficiently
large mismatch between the true and assumed error rates
will lead to decreased reconstruction fidelity. Future work
will investigate more generally the task of selecting a reg-
ularization method for noisy quantum data.

Fig. 9 compares the predictions of these synthetically
trained two- and three-layer machines (using the known
noise values) for some of the observables discussed in the
main text. We find that noise-layer training allows the
RBMs to provide much tighter agreement in, for exam-
ple, values of the transverse field and mutual informa-
tion. Surprisingly, the three-layer machines actually pro-
duce poorer estimates of the transverse field correlator
in the ordered phase, despite yielding two-body density
operators with higher fidelities for all sampled states. A
more detailed analysis of the ordered phase states reveals
that regularized training does indeed produce better esti-
mates of the one- and two-body expectation values 〈σxi 〉,
〈σ̂xi σ̂xi+1〉 for all sites i. However, at bonds (3, 4) and (5,
6), where quantum fluctuations are strongest, the three-
layer improvement in the two-body expectation value is
relatively small, while the reduction in the one-body ex-
pectation value is substantial. Upon computing the con-
nected correlator 〈σ̂xi σ̂xi+1〉−〈σxi 〉〈σxi+1〉, the overall effect
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is an overestimate of the true correlation.

VII. APPENDIX: PROOF OF CLASSICAL
FIDELITY BOUND

Inequality (24) is obtained by bounding the proba-
bility of the most likely outcome using the Renyi en-
tropy H2 in the measurement basis. By definition, H2 =
− log

∑
τ PGT(τ )2, and

∑
τ PGT(τ )2 ≥ maxτ PGT(τ )2,

so − log
∑
τ PGT(τ )2 ≤ −2 log maxτ PGT(τ ). Rearrang-

ing, maxτ PGT(τ ) ≤ e−H2/2. In particular, this bounds
the probability of any event in the training set, so

F (PFD, PGT) =
∑
τ

√
PFD(τ )PGT(τ )

≤
∑
τ

√
PFD(τ )e−H2/2

=
√
Nse

−H2/4

VIII. APPENDIX: RENYI ENTROPY BOUND
FROM POSITIVE PURE STATES

The nth order Renyi entropy of a quantum state ρ̂ is
defined as Sn [ρ̂] = 1

1−n logTrρ̂n.
Consider a system S partitioned into subsets A and

B, and a density operator ρ̂ defined on S; its reduced
density operator in the A subsystem is ρ̂A = TrB ρ̂. Let
|i〉, |j〉 denote orthonormal bases for A,B respectively, so
that the set of product states |i, j〉 forms an orthonormal
basis for the full system S. Let pi,j be the probability
assigned by ρ̂ to the measurement outcome i, j: pi,j =
Tr (ρ̂|i, j〉〈i, j|). The positive-pure partner to the mixed
state is defined as

|ΨP [ρ]〉 =
∑
i,j

√
pi,j |i, j〉, (28)

and the corresponding reduced density operator on A
is ρ̂PA = TrB |ΨP [ρ]〉〈ΨP [ρ]|.

Theorem: For n > 1, the Renyi entropies Sn of the
two density operators satisfy the inequality

Sn
[
ρ̂PA
]
≤ Sn [ρ̂A] (29)

As a consequence, in the case of pure states ρ̂, where
the global Renyi entropy vanishes, the positive-pure part-
ner provides a lower bound on the mutual information:

In
[
ρ̂P
]

= Sn
[
ρ̂PA
]

+ Sn
[
ρ̂PB
]

(30)
≤ Sn [ρ̂A] + Sn [ρ̂B ] (31)
= In [ρ̂] (32)

We note that for the case of the n = 2 Renyi entropy
and pure states ρ̂, this result has been obtained in previ-
ous work [20, 21].

Proof: Choose an auxiliary system R to purify ρ̂:
ρ̂ = TrR|Ψ〉〈Ψ| for some pure state |Ψ〉 living in S ⊗ R.
If |α〉 is an orthonormal basis for R, we can expand
the larger pure state in the joint basis |i, j, α〉 : |Ψ〉 =∑
i,j,α Ψα

i,j |i, j, α〉 for some complex coefficients Ψα
i,j .

In terms of these amplitudes, the reduced density op-
erator of the mixed state on A is

ρ̂A =
∑
α,j

Ψα
i,jΨ

α∗
i′,j |i〉〈i′| (33)

and so

Trρ̂nA =
(
Ψα1
i1,j1

Ψα1∗
i2,j1

) (
Ψα2
i2,j2

Ψα2∗
i3,j2

)
. . .
(
Ψαn
in,jn

Ψαn∗
i1,jn

)
(34)

with summation over all indices implied. The reduced
density operator for positive-pure partner may be ob-
tained from the definition above:

ρ̂PA =
∑
i,i′,j

√
pi,jpi′,j |i〉〈i′| (35)

whence

Tr
(
ρ̂PA
)n

=
(√
pi1,j1pi2,j1

) (√
pi2,j2pi3,j2

)
. . .
(√
pin,jnpi1,jn

)
(36)

(summation implied). Furthermore,

pi,j =
∑
α

Ψα
i,jΨ

α∗
i,j (37)

and so by the Cauchy-Schwartz inequality,∣∣∣∣∣∑
α

Ψα
i,jΨ

α∗
i′,j′

∣∣∣∣∣ ≤
√√√√(∑

α

Ψα
i,jΨ

α∗
i,j

)(∑
α′

Ψα′
i′,j′Ψ

α′∗
i′,j′

)
(38)

=
√
pi,jpi′,j′ (39)

Therefore, writing i = (i1, ..., in), j = (j1, ..., jn),

Trρ̂nA =
∑
i,j

(∑
α1

Ψα1
i1,j1

Ψα1∗
i2,j1

)(∑
α2

Ψα2
i2,j2

Ψα2∗
i3,j2

)

. . .

(∑
αn

Ψαn
in,jn

Ψαn∗
i1,jn

)
(40)

≤
∑
i,j

∣∣∣∣∣∑
α1

Ψα1
i1,j1

Ψα1∗
i2,j1

∣∣∣∣∣
∣∣∣∣∣∑
α2

Ψα2
i2,j2

Ψα2∗
i3,j2

∣∣∣∣∣
. . .

∣∣∣∣∣∑
αn

Ψαn
in,jn

Ψαn∗
i1,jn

∣∣∣∣∣ (41)

≤
∑
i,j

(√
pi1,j1pi2,j1

) (√
pi2,j2pi3,j2

)
. . .
(√
pin,jnpi1,jn

)
(42)

= Tr
(
ρ̂PA
)n

(43)
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Hence− logTr
(
ρ̂PA
)n ≤ − logTr (ρ̂A)

n, which means that
for n > 1, Sn(ρ̂PA) ≤ Sn(ρ̂A).
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