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Motivated by far-reaching applications ranging from quantum simulations of
complex processes in physics and chemistry to quantum information processing', a
broad effortis currently underway to build large-scale programmable quantum
systems. Such systems provide insights into strongly correlated quantum matter*®,
while at the same time enabling new methods for computation”° and metrology™.
Here we demonstrate a programmable quantum simulator based on deterministically
prepared two-dimensional arrays of neutral atoms, featuring strong interactions
controlled by coherent atomic excitation into Rydberg states™. Using this approach,
we realize a quantum spin model with tunable interactions for system sizes ranging
from 64 to 256 qubits. We benchmark the system by characterizing high-fidelity
antiferromagnetically ordered states and demonstrating quantum critical dynamics
consistent with an Ising quantum phase transition in (2 +1) dimensions'. We then
create and study several new quantum phases that arise from the interplay between
interactions and coherent laser excitation, experimentally map the phase diagram
and investigate the role of quantum fluctuations. Offering a new lens into the study of

complex quantum matter, these observations pave the way for investigations of
exotic quantum phases, non-equilibrium entanglement dynamics and
hardware-efficient realization of quantum algorithms.

Recent breakthroughs have demonstrated the potential of program-
mable quantum systems, with system sizes reaching around 50 trapped
ions>> or superconducting qubits”®, for simulations and computa-
tion. Correlation measurements with over 70 photons have been used
to perform boson sampling', while optical lattices with hundreds of
atoms are being used to explore Hubbard models® . Larger-scale Ising
spin systems have been realized using superconducting elements",
but they lack the coherence essential for probing quantum matter.
Neutralatom arrays have recently emerged as a promising platform
forrealizing programmable quantum systems®'>'®, Based on individu-
ally trapped and detected cold atoms in optical tweezers with strong
interactions between Rydberg states', atom arrays have been used
to explore quantum dynamics in one- and two-dimensional (1D and
2D) systems®**?* to create high-fidelity® and large-scale®® entangle-
ment, to perform parallel quantum logic operations”?, and torealize
opticalatomic clocks*?°. Although large numbers of atoms have been
trapped®® and rearranged in two and three dimensions®*, coherent
manipulation of programmable, strongly interacting systems with
morethan100individual particles remainsachallenge. Here, we realize
aprogrammable quantum simulator using arrays of up to 256 neutral
atomswith tunableinteractions, demonstrating several new quantum
phases and quantitatively probing the associated phase transitions.

Programmable Rydberg arraysin2D

Our experiments are carried out on the second generation of an experi-
mental platform described previously®. The new apparatus uses a spa-
tial light modulator (SLM) to form alarge 2D array of optical tweezers
inavacuum cell (Fig. 1a, Methods). This static tweezer array is loaded
with individual ¥Rb atoms from a magneto-optical trap, with a uni-
form loading probability of 50-60% across up to 1,000 tweezers. We
rearrange the initially loaded atoms into programmable, defect-free
patterns using asecond set of moving optical tweezers that are steered
by a pair of crossed acousto-optical deflectors (AODs) to arbitrary
positions in two dimensions (Fig. 1a)*. Our parallel rearrangement
protocol (see Methods) enables rearrangement into a wide variety of
geometriesincluding square, honeycomb and triangular lattices (left
panelsin Fig. 1b-d). The procedure takes a total time of 50-100 ms
for arrays of up to a few hundred atoms and results in filling fractions
exceeding 99%.

Qubitsareencodedintheelectronic groundstate |g) and the highly
excited n=70Rydbergstate |r) of eachatom. Weilluminate the entire
array from opposite sides with two counter-propagating laser beams
at420 nm and 1,013 nm, shaped into light sheets (see Methods), to
coherently couple |g) to |r) viaatwo-photon transition (Fig. 1a).
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3. Readout

2. Rearrange

Fig.1|Programmable two-dimensional arrays of strongly interacting
Rydbergatoms. a, Atoms areloadedintoa2D array of optical tweezer traps
andrearrangedinto defect-free patterns by asecond set of moving tweezers.
Lasersat420 nmand 1,013 nmdrive acoherent two-photontransitionineach
atombetweenground state |g) = 15812, F=2,mp=-2) and Rydbergstate
Iry=170S,,,, mj=- 1/2, m;=-3/2).EMCCD, electron-multiplying charge-coupled
device.b, Fluorescenceimage of initial random loading of atoms, followed by
rearrangement to a defect-free 15 x 15 (225 atoms) square array. After this

Theresulting many-body dynamics U(t) are governed by acombina-
tion of the laser excitation and long-range van der Waals interactions
betweenRydbergstates(V};= Vy/Ix; ~ le(’), described by the Hamiltonian

H 1
=2 L @nElthe)-aY n+ Y vy v
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where his the reduced Planck’s constant, h.c. denotes the Hermitian
conjugate, n; = |r;){r;|, and Q and 4 are the two-photon Rabi frequency
and detuning, respectively. After evolution under the Hamiltonian (1),
the state of each atomic qubitis read out by fluorescence imaging that
detectsonlyatomsin |g), whileatomsin |[r) are detected asloss. Detec-
tion fidelities exceed 99% for both states (see Methods).

The Rydberg blockade mechanism®* is central to understanding
the programmable dynamics driven by the Hamiltonian (1). It originates
from the long-range interactions between Rydberg states, providing
an effective constraint that prevents simultaneous excitation of atoms
within ablockade radius R, = (V,/Q)"°. We control the effective block-
aderange R,/aby programming the lattice spacing a for the atom array.
Using these control tools, we explore quantum evolution resulting in
awide variety of quantum phases.

Chequerboard phase

The smallest value of Ry/athat resultsin an ordered phase for the quan-
tum many-body ground state of the system corresponds toR,/a =1,
where only one out of every pair of nearest-neighbour atoms can be
excited to |r). On a square array, this constraint leads to a
Z,-symmetry-broken chequerboard phase with an antiferromagnetic
(AF) ground state. To realize such a state, we initialize the array at
R,/a=1.15(a=6.7 um, Q =21 x 4.3 MHz) with all atoms in|g). We then
dynamically sweep the detuning A from negative to positive values
while keeping the Rabi frequency Q fixed to bring the system
quasi-adiabatically into the chequerboard phase (Fig. 1b and Fig. 2a).
Asimilarapproach canbe usedto create analogous ordered phases on
other lattice geometries (Fig. 1c, d).

We quantify the strength of antiferromagnetic correlationsin the cheq-
uerboard phase over many experimental repetitions using the connected
density-density correlator GP(k, ) = ﬁzi - () = <m)(ny)), where
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initialization, the atoms evolve coherently under laser excitation according to
the Hamiltonian (equation (1)) with Rabi frequency Q(¢), detuning A(t) and
long-range interactions V, realizing amany-body unitary U(¢). Finally, the state
of eachatomis read out, with atoms excited to|r) detected as loss and marked
withred circles. Shown on the far right is an example measurement following
quasi-adiabatic evolutioninto the chequerboard phase. ¢,d, Similar evolution
onhoneycomb and triangular lattices resultin analogous ordered phases of
Rydbergexcitations withfilling1/2 and 1/3, respectively.

the sum is over all pairs of atoms (i, j) separated by the same relative
lattice displacement x = (k, [) sites, normalized by the number of such
pairs Ny,,. Our measurement of G®(k, [) on a12 x 12 system (Fig. 2b)
yields horizontal, vertical and radially averaged correlation lengths of
&=11.1(1), §,=11.3(1) and §;=12.0(1), respectively (see Fig. 2cand Meth-
ods), showing long-range correlations across the entire 144-atom array.
These exceed the values reported previously for 2D systems?>? by
nearly an order of magnitude.

Single-site readout also allows us to study individual many-body
states of our system (Fig.2d). Out of 6,767 repetitionsonal2 x12 array,
the two perfectly ordered states |AF,) and |AF,) are by far the most
frequently observed microstates, with near-equal probabilities
between the two. We benchmark our state preparation by measuring
the probability of observing perfect chequerboard ordering as afunc-
tion of system size (Fig. 2e). We find empirically that the probability
scales with the number of atoms according to an exponential 0.97",
offering abenchmark that includes all experimental imperfections
suchasfinite detection fidelity, non-adiabatic state preparation, spon-
taneous emission, finite Rydberg-state lifetime and residual quantum
fluctuationsinthe ordered state (see Methods). Remarkably, even for
asystemsizeaslarge as15x15 (225 atoms), we still observe the perfect
antiferromagnetic ground state with probability 0.10*3% within the
exponentially large Hilbert space of dimension 22 =10,

(2+1)DIsing quantum phase transition

We now study the quantum phase transition into the chequerboard
phase. Quantum phase transitions fallinto universality classes charac-
terized by critical exponents that determine universal behaviour near
the quantum critical point,independent of the microscopic details of the
Hamiltonian®. The transition into the chequerboard phaseis expected to
beintheparadigmatic—butnever previously observed—quantumIsing
universality class in (2 + 1) dimensions™. Quantitative probing of such
transitions can be used to benchmark quantum many-body evolution®,

To explore universal scaling across this phase transition for alarge
system, we study the dynamical build-up of correlations associated
with the quantumKibble-Zurek mechanism*** on a16 x 16 (256 atoms)
array, at fixed R,/a=1.15. We start at a large negative detuning with all
atoms in |g) and linearly increase A/Q, stopping at various points to
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Fig.2|Benchmarking of quantum simulator using chequerboard ordering.
a, A quasi-adiabatic detuning sweep A(t) at constant Rabi frequency Qisused to
preparethechequerboard ground state with high fidelity. b, Two-site
correlation function G?(k,), averaged over all pairs of atoms onal2 x 12 array,
showing near-perfect alternating correlations throughout the entire system.

¢, Top panel: exponential fits of rectified horizontal and vertical correlations
areused to extract correlationlengthsinthe corresponding directions, {,and
&,.Bottom panel: radially averaged coarse-grained correlations G, as a
function of radial distance used to calculate & (see Methods). Error (in
brackets) denotes the uncertaintyin thefit.d, Histogram of many-body state
occurrence frequency after 6,767 repetitions of the experimentonal2x12
array. The two most frequently occurring microstates correspond to the two
perfect chequerboard orderings AF1and AF2, and the next four most common
onesare thosewithasingle defectinone of the corners of the array.

e, Probability of finding a perfect chequerboard ground state as a function of
array size (error barsrepresent the 68% confidence interval). The slightly
higher probabilitiesin odd x odd systems is due to commensurate edges on
opposingsidesofthearray. All datain this figure are conditioned on defect-free
rearrangement of the array.

measure the growth of correlations across the phase transition
(Fig. 3a,b). Slower sweep rates s = d4/dt result in longer correlation
lengths &, as expected (Fig. 3c).

The quantum Kibble-Zurek mechanism predicts a universal scal-
ing relationship between the control parameter 4 and the correlation
length §. Specifically, when both 4 and § are rescaled with the sweep
rate s (relative to areference rate s,)

E=E(s/so)* )

A=(4-4,)(s/sp)* (3)

with critical point 4. and critical exponents p=v/(1+2v) and
k=-1/(1+2v), then universality implies that the rescaled £ versus 4
collapses onto a single curve? for any sweep rate s. Figure 3d shows a
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Fig.3|Observation ofthe (2 +1)D Ising quantum phase transitionona
16 x16 array. a, The transitioninto the chequerboard phase is explored using a
linear detuning sweep A(t) at constant Q. Theresulting chequerboard ordering
ismeasured at various endpoints. b, Example of growing correlations G® with
increasing4/Qalongalinear sweep with sweep rate s=15MHz ps™. ¢, Growth of
correlationlength £for sspanning aboutan order of magnitude (15, 21,30, 42,
60,85and120 MHz ps™). fused here measures correlations between the
coarse-grained local staggered magnetization (see Methods).d, For an
optimized value of the critical exponent v, all curves collapse onto asingle
universal curve when rescaled relative to the quantum critical point 4.. Inset:
distance Dbetween all pairs of rescaled curves as afunction of v (see Methods).
The minimum atv=0.62(4) (red dashed line) yields the experimental value for
thecritical exponent (red and grey shaded regions indicate uncertainties) and
is consistent with the theoretical prediction* v=0.629.

striking collapse of experimental data, demonstrating such a universal
scaling.

The underlying class of phase transitions (quantum or classical)
is described by Lorentz-invariant field theories®, resulting in
dynamical critical exponent z = 1. We experimentally extract the
correlation length critical exponent v for our system by finding the
value that optimizes universal collapse. To do so, we firstindepen-
dently determine the position of the critical point 4., which cor-
responds to the peak of the susceptibility y=- d%(H)/04* and is
associated with a vanishing gap®. For adiabiatic evolution under
the Hamiltonian (1), the susceptibility x is related to the mean
Rydberg excitation density (n) by y=0(n)/04 according to the
Hellman-Feynman theorem. We measure {n) versus 4 along a slow
linear sweep to remain as adiabatic as possible. We take the numer-
ical derivative of the fitted data to obtain y, finding its peak to be
at 4./Q=1.12(4) (see Methods).
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Fig.4|Phase diagram of the two-dimensional square lattice. a, Example
fluorescenceimage of atomsinthe chequerboard phase and the
corresponding Fourier transform averaged over many experimental
repetitions (¥ (k)), highlighting the peak at (,i) (circled). b, Image of atomsin
thestriated phase and the corresponding (F(k)) highlighting peaks at (0,T),
(1,0) and (1, 1) (circled). ¢, Image of atomsin the star phase with corresponding
Fourier peaks at (1t/2,m) and (1,0) (circled), as well as at symmetric partners

Having identified the position of the critical point, we now extract
the value of v that optimizes data collapse (inset of Fig. 3d and Meth-
ods). Theresulting v=0.62(4) rescales the experimental datato clearly
fall on a single universal curve (Fig. 3d). This measurement is in good
agreement with the value of v=0.629 predicted for the quantumIsing
universality class in (2 + 1) dimensions™, and distinct from both the
mean-field value® of v=1/2 and the previously verified value in (1+1)
dimensions® of v=1(also corresponding to the 2D classical Ising phase
transition). The extracted critical exponent vis consistent across differ-
entarray sizes (Extended DataFig. 8) and has an uncertainty dominated
by the precision of our independent measurement of the location of
the quantum critical point (see Methods). This demonstration of uni-
versal scaling constitutes a clear signature of quantum many-body
behaviour, and highlights opportunities for quantitative studies of
quantum critical phenomena.

Phase diagram of the square lattice

Arichvariety of new phases hasbeen recently predicted for the square
lattice when Rydberg blockade is extended beyond nearest
neighbours™. To map this phase diagram experimentally, we use the
Fourier transform of single-shot measurement outcomes,
F (k) = |3; exp(ik - x;/a)n;/N|, which characterizes long-range order in
our system. For instance, the chequerboard phase shows aprominent
peak at k = (1t,), corresponding to the canonical antiferromagnetic
order parameter: the staggered magnetization (Fig. 4a). We construct
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(m,1/2) and (0,m).d, The experimental phase diagramis constructed by
measuring order parameters for each of the three phases for different values of
the tunableblockade range R,/a and detuning A/Q. Red markersindicate the
numerically calculated phase boundaries (see Methods). e, The order
parameters evaluated numerically for the ground state using DMRG fora9 x9
array (see Methods). (Note different dimensionless colour scales used for the
star phase comparison.)

order parameters for all observed phases using the symmetrized
Fourier transform & (ky, ky) =(F (ky, ky) + F (ky, ky))/2, averaged over ex-
perimental repetitions, which takes into account the reflection
symmetry in our system (see Methods).

When interaction strengths are increased such that next-nearest
(diagonal) neighbour excitations are suppressed by Rydberginteractions
(Ry/a = ~[2), translational symmetry along the diagonal directionsis also
broken, leading to the appearance of a new striated phase (Fig. 4b). In
this phase, Rydberg excitations are mostly located two sites apart and
hence appear both on alternating rows and alternating columns. This
orderingisimmediately apparent through the observation of prominent
peaks at k= (0,m), (11,0) and (1t,1) in the Fourier domain. As discussed
and demonstrated below, quantum fluctuations, appearing as defects
onsingle-shotimages (Fig. 4b), have akey role in stabilizing this phase.

At even larger values of R /a2 1.7, the star phase emerges, with
Rydberg excitations placed every four sites along one direction and
every two sites in the perpendicular direction. There are two possible
orientations for the ordering of this phase, so Fourier peaks are
observedatk=(11,0) and (11/2,1), as well as at their symmetric partners
(0,m) and (m,11/2) (Fig. 4¢). In the thermodynamic limit, the star order-
ing corresponds to the lowest-energy classical configuration of
Rydberg excitations on a square array with a density of 1/4.

We now systematically explore the phase diagram on 13 x 13 (169
atoms) arrays, with dimensions chosen to be simultaneously commen-
surate with chequerboard, striated and star orderings (see Methods).
For eachvalue ofthe blockade range R,/a, we linearly sweep 4 (similar



toFig.3abutwitharamp-down time of 200 ns for Q), stopping at evenly
spaced endpointstoraster the full phase diagram. For every endpoint,
we extract the order parameter corresponding to each many-body
phase, and plot them separately to show their prominencein different
regions of the phase diagram (Fig. 4d).

We compare our observations with numerical simulations of the
ground state phase diagram using the density-matrix renormalization
group (DMRG) onasmaller 9 x9 array with openboundary conditions—
thelargest systemsize accessible with a similar phase diagram (Fig. 4e
and red markers in Fig. 4d) (see Methods). We find excellent agree-
mentinthe extent ofthe chequerboard phase. For the striated and star
phases, we also find good similarity between experiment and theory,
although, owing to their larger unit cells and the existence of many
degenerate configurations, these two phases are more sensitive to
both edge effects and experimental imperfections. We emphasize
that the numerical simulations evaluate the order parameter for the
exactground state of the system at each point, whereas the experiment
quasi-adiabatically prepares these states viaa dynamical process. These
results establish the potential of programmable quantum simulators
with tunable, long-range interactions for studying large quantum
many-body systems that are challenging to access with state-of-the-art
computational tools*°.

Quantum fluctuationsin the striated phase

We now explore the nature of the striated phase. In contrast to the
chequerboard and star phases, which can be understood from a
dense-packing argument™, this phase has no counterpartin the classical
limit (Q~ 0) (see Methods). Striated ordering allows the atoms to lower
their energy by partially aligning with the transverse field, favouring this
phaseat finite Q. This can be seen by considering the 2 x 2 unit cell, within
which one site has a large Rydberg excitation probability (designated
the (0,0) sublattice) (Fig. 5a). Excitations on its nearest-neighbour (0,1)
and (1,0) sublattices are suppressed owing to strong Rydberg blockade.
The remaining atoms on the (1,1) sublattice have no nearest neighbours
inthe Rydberg state and experience a much weaker interaction from
four next-nearest (diagonal) neighbours on the (0,0) sublattice, thus
allowing the (1,1) atoms to lower their energy by forming a coherent
superposition between ground and Rydberg states (Fig. 5b).

We experimentally study quantum fluctuations in this phase by
observing the response of the systemto short quenches (with quench
timest,<1/Q,). Thedependence onthe detuning 4,and laser phase ¢,
of the quench (where Q > Qe in equation (1)) contains information
aboutlocal correlations and coherence, which allows us to characterize
the quantumstates on the different sublattices. The quenchresonance
for each site is determined by the strong interactions with its nearest
and next-nearest neighbours, resulting in a large difference between
the (0,0) and (1,1) sublattices. Therefore, when one sublattice is reso-
nantly driven, the other is effectively frozen on the short timescale ¢,

The nature of the striated phase is revealed using nine-particle
operators to measure the state of an atom, conditioned on its local
environment. Specifically, we evaluate the conditional Rydberg density
P, defined as the excitation probability of an atomif all nearest neigh-
bours are in |g) and exactly d next-nearest (diagonal) neighbours are
in |r) (see Methods). For d =0, we observe a dip in P© near the bare
atomresonance (Fig. 5c), corresponding to resonant de-excitation of the
(0,0) sublattice. Meanwhile, P® and P’ have two separate peaks that
correspond to resonant excitation of the (1,1) sublattice withd=3 and
d=4next-nearest neighbour excitations, respectively (Fig. 5c). Remark-
ably, we find that the quench response of both the (0,0) and (1,1) sublat-
tices depends on the phase ¢, of the driving field during the quench
(Fig.5d, e). The measured visibilities, together with a simple mean-field
model (see Methods), enable the estimation of unknown Bloch vector
components on the two sublattices, yielding (o, =~ 0.82(6),
(0))(0,0)= 0.25(2), and {0, )=~ 0.46(4),(0,)1 ;= 0.01(1). Weempha-
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Fig.5|Probing correlations and coherencein thestriated phase viaquench
dynamics. a, Unit cell of striated ordering (dashed box) with (0,0) and (1,1)
sublattices outlined inred and blue, respectively. The fillshade on eachssite
reflects the meanRydberg excitation. b, The variational states for the (0,0) and
(1,1) sublattices areillustrated on the Bloch sphere (see Methods). The black
arrowillustrates the phase ¢, of @ during the quench. ¢, Probability P (where d
isnumber of diagonal neighbour excitations) of an excitation, conditioned on
observing no nearest-neighbour excitations, and zero (red), three (light blue)
or four (dark blue) diagonal next-nearest neighbour excitations. P is plotted
for ¢,=1/2,showing resonant de-excitation of the (0,0) sublattice near the
bare-atom resonance (leftmost vertical line). P and P are plotted for
¢,=-1/2,showingexcitation peaks for the (1,1) sublattice atinteraction shifts
corresponding to three or four diagonal neighbours (two rightmost vertical
lines).d, e, ¥ and P’ vary with quench phase ¢, at their corresponding
resonances (4,/2m=1.4 and 20.4 MHz, respectively), demonstrating coherence
onboththe (0,0)and (1,1) sublattices. Solid line fits are used to extract Bloch
vector components. Error bars represent one standard deviation.

size that accurate characterization requires the use of more sophisti-
cated variational wavefunctions (based on, for example, tensor
networks) and warrants further investigation. Thisapproach canalso
be extended through techniques such as shadow tomography* and
canbeapplied to probe the coherence properties of highly entangled
quantum states of matter*?*,

Outlook

These experiments demonstrate that 2D Rydberg atom arrays con-
stitute a powerful platform for programmable quantum simulations
with hundreds of qubits. We expect that system size, quantum control
fidelity and degree of programmability can all be increased consider-
ably through technical improvements. In particular, array sizes and
rearrangement fidelities, along with atomic-state readout, are cur-
rently limited by collisions with background gas particles, and can be
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improved with an upgraded vacuum system® and increased photon
collection efficiency. Quantum coherence can be enhanced by using
higher-power Rydberg lasers and by encoding qubits in hyperfine
ground states'?, Tweezers with different atomic®?*°* and molecu-
lar*¢*” species can provide additional features and lead to new appli-
cations in both quantum simulations and metrology. Finally, rapidly
switchable local controlbeams can be used to performuniversal qubit
operations in parallel across the system.

Our experiments realize several new quantum phases and provide
insights into quantum phase transitions in 2D systems. These studies
can be extended along several directions, including the exploration of
non-equilibrium entanglement dynamics throughrapid quenchesacross
quantum phase transitions**~, the study of surface criticality in systems
withsharp boundaries™, theinvestigation of topological quantumstates
of matter on frustrated lattices***, the simulation of lattice gauge theo-
ries®>* and the study of broader classes of spin models using hyperfine
encoding®. Quantum information processing can also be explored with
hardware-efficient methods for multi-qubit operations® and protocols
for quantum error correction and fault-tolerant control®. Finally, our
approachiswell suited for efficientimplementation of new algorithms for
quantum optimization®*> and sampling®, enabling experimental tests of
their performance with system sizes exceeding several hundred qubits.

During the completion of this work, we became aware of related
work demonstrating quantum simulations of 2D antiferromagnets
with hundreds of Rydberg atoms®.
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Methods

2D optical tweezer array

Our 2D tweezer array is generated by afree-running 810-nm Ti:sapphire
laser (M Squared, 18-W pump). The laser illuminates a phase-control
spatial light modulator (Hamamatsu X13138-02), which imprints a
computer-generated hologram on the wavefront of the laser field. The
phase hologram is calculated using the phase-fixed weighted
Gerchberg-Saxton (WGS) algorithm®® to produce an arbitrary arrange-
ment of tweezer spots after propagating to the focus of amicroscope
objective (Mitutoyo: 3.5 mmglass thickness corrected, 50x, NA=0.5).
Using this method, we can create tweezer arrays with roughly 1,000
individual tweezers (Extended Data Fig.1). When calculating the phase
hologram, we improve trap homogeneity by pre-compensating for the
variation in diffraction efficiency across the tweezer array (roughly
given by sinc®(3(B,rp/Oimax)) Where denotes the deflection angle from
zeroth order).

We also use the phase control of our SLMto correct for optical aberra-
tions on tweezers within the experimentally used field of view at the plane
of atoms (Extended Data Fig. 2). Aberrations reduce the peak intensity
of focal spots (characterized by the Strehl ratio) and correspondingly
reduce the light shift of our tweezers onthe atoms. By measuring these
light shifts as we apply awavefront correction to the SLM, parametrized
by several low-order Zernike polynomials with varying amplitudes, we
quantify and correct for different aberrations in our optical system
(Extended Data Fig. 2a). Using this method, we compensate for 70 mil-
liwaves of aberrations, observe atotal increase of 18%in our trap intensity
(Extended DataFig. 2c) and measure a corresponding reductionin the
range of trap frequencies (Extended Data Fig. 2d). Aberration correc-
tionadditionally allows us to place tweezers closer together (minimum
separation 3 pm) to reach larger blockade ranges R/a.

Tweezersinthearray have waists~900 nm, trap depths of -2 x17 MHz
andradial trap frequencies of -2t x 80 kHz. In each experimental cycle,
the tweezers are loaded from a magneto-optical trap with uniform
loading probabilities of 50-60% after 50-100 ms loading time.

Atomrearrangement
Atomsarerearranged usinganadditional set of dynamically moving twee-
zers, which are overlaid on top of the SLM tweezer array. These movable
tweezers are generated by a separate 809-nm laser source (DBR from
Photodigmand tapered amplifier from MOGLabs) and are steered witha
pair ofindependently controlled crossed acousto-optic deflectors (AODs)
(AAOptoElectronicDTSX-400).Both AODs aredrivenby anarbitrary wave-
formwhichis generated inreal time using our home-built waveform gen-
eration software and anarbitrary waveformgenerator (AWG) (M4i.6631-x8,
Spectrum Instrumentation). Dynamically changing the RF frequency
allows for continuous steering of beam positions, and multi-frequency
waveforms allow for multiple moving tweezersto be created in parallel®.
Although many 2D sorting protocols have been described previ-
ously®?33%626 we implement a new protocol designed to leverage
parallel movement of multiple atoms simultaneously. More specifi-
cally, we create arow of moving traps which scans upwards along the
SLM tweezer array to move one atom withineach columnupin parallel.
This is accomplished by scanning a single frequency component on
the vertical AOD to move from the bottom to the top of the SLM array,
during whichindividual frequency components are turned on and off
within the horizontal AOD to create and remove tweezers at the cor-
responding columns. This protocolis designed for SLM tweezer arrays
inwhich traps are grouped into columns and rows. Although this does
constrainthe possible geometries, most lattice geometries of interest
canstillbe defined onasubset of points along fixed columns and rows.

Rearrangement algorithm
Here we detail the rearrangement algorithm, which is illustrated in
Extended Data Fig. 3. It operates on an underlying rectangular grid of

rows and columns, where the SLM traps correspond to vertices of the
grid. We pre-program a set of ‘target traps’ that we aim to fill.

Pre-sorting. We begin by ensuring that each column contains a sufficient
number of atoms to fill the target traps in that column. In each experi-
mental cycle, owing to the randomloading throughout the array, some
columns may contain excess atoms while other columns may lack a suf-
ficient number of atoms. Accordingly, we apply a‘pre-sorting’ procedure
inwhich we move atoms between columns. To fill a deficient columnj,
we take atoms from whichever side of jhas alarger surplus. We identify
which atomsto take by finding the nearest atoms from the surplus side
thatareinrowsfor which columnjhasanempty trap. We then perform
parallel horizontal sorting to move these atoms into the empty traps
ofj (notall surplus atoms need to be from the same source column).

Ifthe one-side surplusisinsufficient to fill columnj, then we move as
many surplus atoms as possible from this one side and leavej deficient.
Wethen proceed to the next deficient column, and cycle through until
all columns have sufficient atoms. In typical randomly loaded arrays,
this process takes a small number of atom moves compared with the
total number of moves needed for sorting. This specific algorithm can
fail to properly distribute atoms between columns owing to lack of
available atoms, but these failures are rare and do not limit the experi-
mental capabilities.

Ejection. After pre-sorting, we eject excess atoms in parallel by scanning
the vertical AOD frequency downward, beginning at a row in which we
wantto pick up anatom, and ending below the bottomrow of the array.In
eachdownwardscan, we eject asingle atom from each column containing
excess atoms; we repeat this process until all excess atoms are ejected.

Parallel sorting within columns. After pre-sorting and ejection, each
columnhasthe correct number of atomstofill all of its target traps by
moving atoms up/down within the column. We now proceed to shuf-
fle the ith-highest loaded atoms to the ith-highest target traps. As the
atoms cannot move through each other, in asingle vertical scanatoms
aremoved as close as possible to their target locations, reaching their
targets unless they are blocked by another atom. We repeat upward/
downward scans until allatoms reach their target locations.

Rearrangement parameters and results

When using moving tweezersto pick up and drop offatomsin the SLM
traps, the moving tweezers ramp on/off over 15 ps while positioned
to overlap with the corresponding SLM trap. The moving tweezers
are approximately twice as deep as the static traps, and move atoms
between SLM traps with aspeed of 75 pm ms™. Typical rearrangement
protocolstake atotal of 50-100 msto implement in practice, depending
onthesize of the target array and the randominitial loading. Alignment
ofthe AOD traps onto the SLM array is pre-calibrated by measuring both
trap arrays onamonitor CMOS camera and tuning the AOD frequencies
to match positions with traps from the SLM array.

A ssingle round of rearrangement results in typical filling fractions
of ~98.5% across all target trapsin the system. This is limited primarily
by the finite vacuum-limited lifetime (-10 s) and the duration of the
rearrangment procedure. To increase filling fractions, we perform a
second round of rearrangement (having skipped ejection in the first
round to keep excess atoms for the second round). Because the second
round of rearrangement only needs to correct for a small number of
defects, itrequires far fewer moves and can be performed more quickly,
resultinginless background loss. With this approach, we achievefilling
fractions of ~99.2% over more than 200 sites, with atotal experimental
cycle time of 400 ms.

Rydberglaser system
OurRydberglaser system is an upgraded version of a previous set-up®.
The420-nmlaserisafrequency-doubled Ti:sapphire laser (M Squared,
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15-Wpump). Wesstabilize the laser frequency by locking the fundamental
toanupgraded ultra-low-expansion (ULE) reference cavity (notched cyl-
inder design, Stable Laser Systems), with finesse # =30,000 at 840 nm.
The 1,013-nm laser source is an external-cavity diode laser (Toptica
DL Pro), which is locked to the same reference cavity (¥ = 50,000 at
1,013 nm). To suppress high-frequency phase noise from this diode
laser, we use the transmitted light through the cavity, whichis filtered
by the narrow cavity transmission spectrum (30 kHz linewidth)®. This
filtered light is used to injection-lock another laser diode, whose out-
putis subsequently amplified to 10 W by a fibre amplifier (Azur Light
Systems).

Using beam shaping optics to homogeneously illuminate the atom
array withboth Rydberglasers, we achieve single-photon Rabi frequen-
cies of (Q450, Oy o13) = 21 % (160, 50) MHz. We operate with aninterme-
diate state detuning 6 = 21 x 1 GHz, resulting in two-photon Rabi
frequency Q=0,,00, ¢3/26 =21t x 4 MHz. Small inhomogeneities in
the Rydberg beams resultin Rabifrequency variations of ~2% RMS and
~6% peak-to-peak across the array. With these conditions, we estimate an
off-resonant scattering rate of 1/(20 ps) for atomsin |g) and 1/(150 ps)
foratomsin |r) at peak power.

Rydberg beamshaping

We illuminate our 2D atom array with counter-propagating
Rydberg laser beams from each side. Instead of using elliptical
Gaussian beams, we shape both Rydberg excitation beams into
one-dimensional top-hats (light sheets) to homogeneously illu-
minate the plane of atoms (Extended Data Fig. 4). To ensure homo-
geneous illumination over the entire array, we define our target
field profile in the plane of the atoms with both uniform amplitude
cross-section and flat phase profile. Using a single phase-only SLMin
the Fourier plane to control both phase and amplitude in the image
planeis inherently limited in efficiency; therefore, in practice, we
compromise between optimizing hologram efficiency and beam
homogeneity. We generate these holograms using the conjugate
gradient minimization algorithm (Extended Data Fig. 4¢)®. In all
experimentsin this work, we use 1D top-hat beams with a flat-width
of 105 pm and a perpendicular Gaussian width of 25 pm. The con-
version efficiencies into the top-hat modes are 30% for 420 nm and
38% for 1,013 nm.

Since holographic beam shaping relies on the intricate interplay
of different high spatial frequency components in the light field, it
is extremely sensitive to optical aberrations. We correct for all aber-
rations up to the window of our vacuum chamber by measuring the
amplitude and phase of the electric field as it propagates through the
opticalbeampath (Extended Data Fig. 4a, b)®®. We do so by picking off
asmall portion ofthe Rydbergbeamand observing it onacamerawith
small pixel size and with sensor cover removed for high-fidelity beam
characterization (Imaging Source DMM 27UP031-ML). In this way, we
reduce the wavefronterrorinourbeamdowntoA/100,and also use the
measured field profile as the starting guess in our hologram genera-
tionalgorithm (Extended DataFig. 4a, b). Furthermore, by imaging the
top-hatbeams we also correct for remaining inhomogeneities by updat-
ing the input of our optimization algorithm (Extended Data Fig. 4e, f).
Owing to aberrations and imperfections of the vacuum windows, we
observeslightly larger intensity variations on the atoms than expected
(-3%RMS, ~10% peak-to-peak).

Rydberg pulses

After initializing our atoms in the ground state |g), the tweezer traps
areturned offfor ashort time (<5 ps) during which we apply aRydberg
pulse. The pulse consists of a time-dependent Rabi frequency Q(¢),
time-dependent detuning 4(¢), and arelative instantaneous phase ¢(t).
Thisisimplemented by controlling the amplitude, frequency and phase
ofthe 420-nmlaser using atandem acousto-optical modulator system,
similar to what is described previously?.

Quasi-adiabatic sweeps. To prepare many-body ground states with
high fidelity, we use an optimized quasi-adiabatic pulse shape (Fig. 2a).
The coupling Q(t) isinitially ramped onlinearly at large fixed negative
detuning, held constant during the detuning sweep 4(¢t) and finally
ramped down linearly at large fixed positive detuning. The detuning
sweep consists of a cubicsplineinterpolation between five points: initial
detuning, final detuning, an inflection point where the slope reaches
aminimum, and two additional points that define the duration of the
slow part of the sweep. The sweep used for finding perfect chequer-
board ground-state probabilities (Fig. 2e) was obtained by optimizing
the parameters of the spline cubic sweep to maximize the correlation
length on a12 x 12 (144 atoms) array. The sweep used in detection of
the star and striated phases was optimized based on maximizing their
respective order parameters. In particular, the inflection point was
chosen to be near the position of the minimum gap in these sweeps in
order to maximize adiabaticity.

Linear sweeps. To probe the phase transition into the chequerboard
phase (Fig.3), we use variable-endpoint linear detuning sweepsin which
Qisabruptly turned off after reaching the endpoint. This ensures that
projective readout happens immediately after the end of the linear
sweep instead of allowing time for further dynamics, and is essential
for keeping the system within the quantum Kibble-Zurek regime. Lin-
ear sweeps are done from 4 =-16 MHz to 14 MHz (4/Q=-3.7t0 3.3) at
sweep ratess=15,21,30,42, 60,85 and 120 MHz ps™. Data for locating
the quantum critical point (Extended Data Fig. 7a) are taken from the
slowest of these sweeps (s=15MHz ps™) to remain as close as possible
to the ground state. For mapping out the 2D phase diagram (Fig. 4),
we use the same variable-endpoint linear sweeps at fixed sweep rate
s=12MHz ps™, except that Qis ramped down over 200 ns after reach-
ing the endpoint.

State detection

Attheend of the Rydberg pulse, we detect the state of atoms by whether
or not they are recaptured in our optical tweezers. Atoms in|g) are
recaptured and detected with fidelity 99%, limited by the finite tem-
perature of the atoms and collisions with background gas particlesin
the vacuum chamber.

Atoms excited to the Rydberg state are detected as a loss signal
duetotherepulsive potential of the optical tweezers on |r). However,
the finite Rydberg state lifetime® (-80 ps for 70S,,,) leads to a prob-
ability of -15% for |r) atoms to decay to |g) and be recaptured by the
optical tweezers. In our previous work?, we increased tweezer trap
depthsimmediately following the Rydberg pulse to enhance the loss
signalforatomsin |r).In 2D, thisapproachis less effective, because
atoms that drift away from their initial traps can still be recaptured
inalarge 3D trappingstructure created by out-of-plane interference
of tweezers.

Following an approach similar to what has been previously demon-
strated”, we increase the Rydberg detection fidelity using a strong
microwave pulse to enhance the loss of atomsin |r) while leaving atoms
in |g) unaffected. The microwave source (Stanford Research Systems
SG384) is frequency-tripled to 6.9 GHz and amplified to 3 W (Minicir-
cuits, ZVE-3W-183+). The microwave pulse, containing both 6.9 GHz
and harmonics, is applied on the atoms using a microwave horn for
100 ns. When applying aRydberg mi-pulse immediately followed by the
microwave pulse, we observe loss probabilities of 98.6(4)%. Since this
measurementincludes errorinthe -pulse as well as detection errors,
we apply a second Rydberg m-pulse after the microwave pulse, which
transfers most of the remaining ground state population into the
Rydbergstate. In this configuration, we observe 99.1(4)% loss probabil-
ity, which is our best estimate for our Rydberg detection fidelity
(Extended Data Fig. 5). We find that the loss signal is enhanced by the
presence of both microwave fundamental and harmonic frequencies.



Limits onground-state preparation fidelity

Figure 2e shows an exponential scaling of ~-0.97" for the probability of
preparing perfect chequerboard order versus system size. In this sec-
tion, we provide an estimated accounting of possible contributions to
theimperfect preparation of the ground state. We measure a-1% detec-
tion infidelity for both the ground and Rydberg states, and therefore
attribute the remaining -2% of the errors to imperfect preparation of
the many-body ground state of the system.

The dominant source of error for atoms in the ground state is scat-
tering from the intermediate state caused by the 420-nm laser, with
arate of 1/(20 ps). The combination of Rydberg state spontaneous
decayrate of 1/(375 us), intermediate state scattering rate of 1/(150 ps)
due to the 1,013-nm laser, and blackbody-induced decay at a rate of
1/(250 ps) gives atotal decay rate of 1/(80 ps) for atomsin the Rydberg
state. Althoughitis challenging to model how these errors contribute
to the many-body state preparation, asimple estimate yields an error
probability in excess of 10% per atom during a 2-3-ps sweep, much
larger than the observed infidelity. These considerationsindicate that
somedegree of error resilience is presentin the many-body dynamics.
This intriguing observation warrants further investigations.

Coarse-grained local staggered magnetization
We define the coarse-grained local staggered magnetization for asite
iwith column and row indices a and b, respectively, as:

(_ 1)a+b
m; N </z:> (n,—ny)
wherejissummed over nearest neighbours of site i and N;is the number
of such nearest neighbours (4 inthe bulk, 3 along the edges or 2 on the
corners). The value of m; ranges from —1to 1, with the extremal values
correspondingto the two possible perfect antiferromagnetic orderings
locally on site i and its nearest neighbours (Extended Data Fig. 6a, b).
Thetwo-site correlation function for m;canthen be defined asanaver-
age over experimentrepetitions G?(k, ) = N(% Y. (mmy) = m)my),
where the sumis over all pairs of sites i j separated by arelative lattice
distance of x = (k, /) sites and normalized by the number of such pairs
N, (Extended Data Fig. 6¢). We obtain the correlation length §; by
fittinganexponential decay to theradially averaged Gﬁﬁ)(k, [) (Extended
DataFig. 6d). The coarse-grained local staggered magnetization m;is
defined such that the corresponding G?(k, I} is isotropic (Extended
DataFig. 6¢), which makes for natural radial averaging. This radial
average captures correlations across the entire array better than purely
horizontal or vertical correlation lengths &, and ,, which are more
sensitive to edge effects.

Determination of the quantum critical point

To accurately determine the location of the quantum critical point 4,
for the transition into the chequerboard phase, we measure mean
Rydberg excitation {n) versus detuning 4 for a slow linear sweep with
sweep rate s=15MHz ps™ (Extended Data Fig. 7a). To smooth the meas-
ured curve, we fit a polynomial for {n) versus 4/Q and take its numeri-
cal derivative to identify the peak of the susceptibility y as the critical
point® (Extended Data Fig. 7b).

Small oscillations in {n) result from the linear sweep not being per-
fectly adiabatic. To minimize the effect of this on our fitting, we use
the lowest-degree polynomial (cubic) whose derivative has a peak, and
choose afit window inwhich the reduced chi-squared metricindicates
agood fit. Several fit windows around 4/Q=0to 2 give good cubicfits,
and we average results from each of these windows to obtain
A4,/Q=112(4).

We also numerically extract the critical point for a system with
numerically tractable dimensions of 10 x 10. Using the density-matrix
renormalization group (DMRG) algorithm, we evaluate{n)as afunction

of A and then take the derivative to obtain a peak of the susceptibility
atA.,/0=1.18 (Extended DataFig. 7d, e). To corroborate the validity of
our experimental fitting procedure, we also fit cubic polynomials to
the DMRG data and find that the extracted critical pointis close to the
exactnumerical value (Extended Data Fig. 7e). This numerical estimate
ofthe critical point fora10 x 10 array is consistent with the experimen-
talresult onalarger 16 x16 array. Moreover, our experiments on arrays
of different sizes show that 4./Q does not vary significantly between
12x12,14 x14 and 16 x 16 arrays (Extended Data Fig. 8b).

Data collapse for universal scaling

Optimizing the universal collapse of rescaled correlation length € ver-
sus rescaled detuning 4 requires defining a measure of the distance
betweenrescaled curves for different sweep ratess;. Given f(j') and j;f),
where the index i corresponds to sweep rate s;and,j labels sequential

data points along a given curve, we define a distance®®

b= [y I3 TR G @

i %

The function f(i) (4) isthelinear interpolation off(f)versus j(;), while
Nis the total number of terms in the three nested sums. The sum
overjonly includes points that fall within the domain of overlap of all
datasets, avoiding the problem of linear interpolation beyond the
domainof any single dataset. Defined in this way, the collapse distance
D measures all possible permutations of how far each rescaled
correlationgrowth curveis from curves corresponding to other sweep
rates.

Applied to our experimental data, D is a function of both the loca-
tion of the critical point A, and the critical exponent v (Extended Data
Fig. 8a). Using the independently measured 4./Q =1.12(4), we obtain
v=0.62(4) for optimal data collapse and illustrate in particular the
better collapse for this value than for other values of v (Extended Data
Fig.8c-e). The quoted uncertainty is dominated by the corresponding
uncertainty of the extracted 4.,/Q, rather thanby the precision of finding
the minimum of Dforagiven4,/Q. Note that inrealistic systems sweeps
across the phase transitions resultin highly non-thermal states, which
are challenging to describe within asimple framework®. As compared
withmethods used previously inalD system?, the presentapproachis
robust with respect to additional dynamics after crossing the critical
point. Our experiments give consistent values of 4,/Q and vfor systems
ofsize12x12,14 x14 and 16 x 16 (Extended Data Fig. 8b), suggesting that
boundary effects do not significantly impact our results. However, the
presence of sharp boundaries in our system offers the opportunity to
study surface criticality®, which in our system has a critical exponent®
thatis distinctly different from the bulk value v=0.629.

Order parameters for many-body phases

We construct order parameters to identify each phase using the Fourier
transform to quantify the amplitude of the observed density-wave
ordering. We define the symmetrized Fourier transform
Fky, k) = (F (ky, k,) + F (k,, k))/2 to take into account the C, rotation
symmetry between possible ground-state orderings for some phases.
For the star phase, the Fourier amplitude # (1, 11/2) is a good order
parameter because ordering at k= (11,1/2) isunique to this phase. The
striated phase, on the other hand, shares its Fourier peaks at k = (1t,0)
and (0,m) with the star phase, and its peak at k = (1r,t) with the cheq-
uerboard phase; hence, none of these peaks alone canserve asanorder
parameter. We therefore construct an order parameter for the striated
phasetobe F (0, ) - F(11/2, ), whichis non-zeroin the striated phase
and zero in both chequerboard and star. Similarly, the chequerboard
shares its k = (1,t) peak with the striated phase, so we construct
F(m, ™) - F(0, ™) asanorder parameter thatis zeroin the striated phase
and non-zero only in chequerboard.
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Numerical simulations using DMRG

We numerically compute the many-body ground states at different
pointsinthe (4/Q, Ry/a) phase diagram using the DMRG algorithm””,
which operates in the space of the so-called matrix product state
ansitze. Although originally developed for 1D systems, DMRG can also
be extended to two dimensions by representing the 2D system as a
winding 1D lattice’, albeit with long-range interactions. A major limi-
tation to 2D DMRG is that the number of states required to faithfully
represent the ground-state wavefunction has to be increased expo-
nentially with the width of the system in order to maintain a constant
accuracy. For our calculations, we use amaximum bond dimension of
1,600, which allows us to accurately simulate 10 x 10 square arrays™.
We alsoimpose open boundary conditionsin both directions and trun-
cate the van der Waals interactions so as to retain up to third-nearest-
neighbour couplings. The numerical convergence criterion is set by
thetruncationerror, and the systemis regarded to be well-converged
toits true ground state once this error drops below a threshold of 107.
In practice, this was typically found to be achieved after O(10%)succes-
sive sweeps.

Since the dimensions of the systems studied in Fig. 4,13 x 13 (experi-
mentally) and 9 x 9 (numerically), are both of the form (4n+1) x (4n+1),
the two phase diagrams are expected to be similar. In particular, both
these system sizes are compatible with the commensurate ordering
patterns of the crystalline phases observed in this work, and can host
allthree phases (at the appropriate R,/a) with the same boundary con-
ditions. Likewise, for extraction of the QCP, we use a10 x 10 array as it
is the largest numerically accessible square lattice comparable to the
16 x16 array used in our study of the quantum phase transition.

Mean-field wavefunction for the striated phase

To understand the origin of the striated phase, it is instructive to start
from a simplified model in which we assume that nearest-neighbour
sites are perfectly blockaded. Since we always work in aregime where
R,/a>1,thismodel should also capture the essential physics of the full
Rydberg Hamiltonian.

Inthe classical limit of Q =0, the perfect chequerboard state has an
energy per site of —A4/2 + V(:/2 a) + V(2a), with V(x) being the interac-
tion between sites at a distance x, whereas the corresponding energy
for the star-ordered state is —4/4 (neglecting interactions for x > 2a).
Accordingly, thereisaphase transition between the chequerboard and
star phases when 4 =4[V(J2a) + V(2a)]. On the other hand, for the
same density of Rydberg excitations, the striated phase has a classical
energy per site of —4/4 + V(2a)/2, which is always greater than that of
the star phase; hence, striated ordering never appears in the classical
limit.

At finite Q, however, the striated phase emerges owing to a com-
petition between the third-nearest-neighbour interactions and
the second-order energy shift upon dressing a ground state atom
off-resonantly with the Rydberg state. We can thus model the ground
state of the striated phase as a product state, where (approximately) 1/2
oftheatomsareinthe groundstate, 1/4 oftheatoms arein the Rydberg
state and the remaining 1/4 are in the ground state with a weak coher-
ent admixture of the Rydberg state. A general mean-field ansatz for a
many-body wavefunction of this form is given by

¥ (a,, az)):i®A (cosaylg),+ sinaylr);)
€4,

® (cosa,lg),+ sina,|r);) ® |g)., )
i€, ! jeB J

where A, and A, represent the two sublattices of the (bipartite) A
sublattice, and a, , are variational parameters. If a; = a,, then our trial
wavefunction simply represents a chequerboard state, but if @, # a,,
this state is not of the chequerboard type and leads to the striated
phase.

Based on this ansatz, we can now explicitly see how the striated phase
may become energetically favourable inthe presence ofanon-zero Q.
Consider the atoms on the partially excited sublattice to be in the
superposition |g) + [Q/{4 V(J2a) - A}]Ir); thisdescribes the state of the
atoms on the (1,1) sublattice in the notation of Fig. 5. The net energy
per site of the system is then

_é+ VQa)
4 2

0? . 0*>v(J2a)
4 (4V(J2a)-4) 2 4V(J2a)-A)?

where the third and fourth terms are the second-order energy shift
and mean-field interaction shift, respectively. From this expression,
we observe thatifthe energy gained from the dressing (these last two
terms) islarger than V(2a)/2, then the striated phase prevails over the
star phase.

Dynamical probe of the striated phase

We prepare striated ordering using an optimized cubic spline sweep
along R,/a=1.47, ending at A/Q = 2.35. Immediately after this sweep,
the systemis quenched to detuning 4, and relative laser phase ¢,. We
quench at alower Rabi frequency Q, = 0/4 = 21t x 1MHz to improve
the resolution of this interaction spectroscopy. For the chosen lat-
tice spacing, the interaction energy between diagonal excitations is
21 x 5.3 MHz. The reference phase for the atoms ¢ = O is set by the
instantaneous phase of the Rydberg coupling laser at the end of the
sweep into striated ordering. In the Bloch sphere picture, ¢ =0 corre-
spondsto the +xaxis, so the wavefunctions on (0,0) and (1,1) sublattices
correspond to vectors pointing mostly up or mostly downwitha small
projection of each along the +xaxis. Inthe same Bloch sphere picture,
quenchingat ¢, =1/2 or -1/2 corresponds to rotations around the +y
or—yaxes (Fig. 5b).

To resolve the local response of the system, we use high-order cor-
relators which are extracted from single-shot site-resolved readout.
In particular, we define an operator O’ on the eight atoms surround-
ingsitei. This operator projects the neighbouring atoms into configu-
rations in which all four nearest atoms are in|g) and exactly d of the
diagonal neighbours are in|r). Specifically, the operator O’ decom-
posesinto a projector A;on the four nearest neighbouring atoms and
B{® onthe four diagonal neighbours, according to O = 4, 8{®). Defin-
mgn lg){glandn; = |r)<rl, the nearest-neighbour projectoris written
as A, = ]'IW> ,where(.) denotes nearest neighbours. The projector
de)sums over all configurations of the diagonal neighbours (indexed
ki, k,, ks, k,) with d excitations:

54)
B =ngngngny, (6)
B’=n +ngn + )
P = nkln kznksnk4 nklnkzn k3nk4 ..
8% =n,n AN 0 (8)
;= My My R R Ry

These operators are used to construct the conditional Rydberg density

P 2 <nioz§d)>

3 (O
which measures the probability of Rydberg excitation on site i sur-
rounded by neighbouring-atom configurations for which O/ =1.

To quantify coherences, we measure these conditional probabilities
ontheir corresponding resonances, after afixed quench with variable
quench phase ¢,. For a single particle driven by the Hamiltonian
H= ()(cosqb o, + smqb 0,)/2+ Ao, /2 fortimet, theresulting Heisenberg
evolutlonlsglven by 0 =U'o,U, where U=e """ Theresulting opera-
tor can be expressed as



0’,=Q0sin2a(-o,sin ¢, +0,c05 )
+240sin*a(g,cos ¢, + 0,sin ) ©)

+(cos’a— (1-24%sin’a)o,

where A =4//4*+0?,0=0/JA*+0Q* anda=17:/4% + Q2.

We fit the conditional probabilites #” and P’ as a function of ¢,
(Fig.5d, e), taking 4 as the effective detuning frominteraction-shifted
resonance, and measuring o) asafunction of ¢, to extract the Bloch
vector components<a,), (o), {g,> on the two respective sublattices.
For the (1,1) sublattice response, we model the evolution averaged over
random detunings, due to ~15% fluctuations of the interaction shifts
associated with thermal fluctuations in atomic positions, whichbroaden
and weaken the spectroscopic response. For both sublattices we also
include fluctuationsin the calibrated pulse area (-10% due to low power
used). The extracted fitvaluesare 0'%,%) = - 0.82(6), 0.25(2), - 0.32(4)

X,Y,z

ando;)),=-0.46(4),0.01(1), 0.91(5).

Data availability

The data that support the findings of this study are available from the
corresponding author onreasonable request.
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Extended DataFig.1|Large arrays of optical tweezers. The experimental aberration correction. b, Sampleimage of random loadinginto this tweezer
platform produces optical tweezer arrays withup to-1,000 tweezers and -50% array, with543loaded atoms. Atoms are detected onan EMCCD camera with
loading probability per tweezer after 100 ms of magneto-optical trap loading fluorescence imaging.

time.a, Cameraimage of an array of 34 x 30 tweezers (1,020 traps), including
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Extended DataFig. 2| Correctingforaberrationsinthe SLM tweezer array.
Theaberration correction procedure uses the orthogonality of Zernike
polynomialsand the fact that correcting aberrationsincreases tweezer light
shifts onthe atoms. Toindependently measure and correct each aberration
type, Zernike polynomials are added with variable amplitude to the SLM phase
hologram, with values optimized to maximize tweezer light shifts. a, Two
common aberration types: horizontal coma (upper) and primary spherical
(lower), for which -50 milliwaves compensationoneachreduces aberrations
andresultsinhigher-depth traps.b, Correcting for aberrations associated with
the13 lowest-order Zernike polynomials. The sum of all polynomials with their
associated coefficients gives the total wavefront correction (RMS-70
milliwaves) for our optical system, which is summed with the optical tweezer
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hologramonthe SLM. ¢, Trap depthsacrossa26 x 13 trap array before and after
correction for aberrations. Aberration correctionresults in tighter focusing
(higher trap light shift) and improved homogeneity. Trap depths are measured
by probing thelightshiftof each trap onthe|5S, 5, F=2)~>|5P5 5, F'=2)
transition.d, Aberration correction alsoresultsin higherand more
homogeneoustrap frequencies across the array. Trap frequencies are
measured by modulating tweezer depths at variable frequencies, resulting in
parametric heatingand atom loss when the modulation frequency is twice the
radial trap frequency. The measurement after correction for aberrations shows
anarrower spectrumand higher trap frequencies (averaged over the whole
array).
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Extended DataFig. 3 | Rearrangement protocol.a, Sample sequence of
individual rearrangement steps. There are two pre-sorting moves (1,2). Move 3
isthesingle ejection move. Moves 4-6 consist of parallel vertical sorting within
each column, including both upward and downward moves. The upper panel
illustrates the frequency spectrum of the waveformin the vertical and
horizontal AODs during these moves, with the underlying grid corresponding

»e

° e

Vertical AOD

Frequency (MHz)

500.06....I %
x:;. e o & = g
® 0| © & @ @ g
c0o0o| ® & 5

Time (ms)

tothe calibrated frequencies that map to SLM array rows and columns.

b, Spectrograms representing the horizontal and vertical AOD waveforms
over the duration of asingle vertical frequency scan during a realistic
rearrangement procedure fora26 x 13 array. The heat-maps show frequency
spectraofthe AOD waveforms over small time intervals during the scan.
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Rydbergstates. Note that the transitions to|69P) and|70P) are in the range of

Extended DataFig. 5| Characterizing microwave-enhanced Rydberg
10-12 GHz, and over this entire range there is strong transfer out of |r). Other

detectionfidelity. The effect of strong microwave (MW) pulses on Rydberg
atomsis measured by preparing atomsin|g), exciting to|r) with aRydberg resonances might be due to multiphoton effects. b, With fixed 6.9-GHz
mi-pulse, and then applying the microwave pulse before de-exciting residual microwave frequency and varying pulse time, there is arapid transfer out of the
RydbergatomswithafinalRydbergmi-pulse. (The entire sequence occurswhile ~ Rydbergstate onthe timescale of several nanoseconds. Over short timescales,
tweezers are briefly turned off.) a, Broad resonances are observed withvarying  there may be coherent oscillations that return populationback tor),soa
microwave frequency, corresponding to transitions from|r)=|705) to other 100-ns pulse is used for enhancement of loss signal of|r) in the experiment.




Extended DataFig. 6 | Coarse-grainedlocal staggered magnetization.

a, Examples of Rydberg populations n;after a faster (top) and slower (bottom)
linear sweep.b, Corresponding coarse-grained local staggered magnetizations
m;clearly show larger extents of antiferromagnetically ordered domains (dark
blue or dark red) for the slower sweep (bottom) than for the faster sweep (top),
asexpected from the Kibble-Zurek mechanism. ¢, Isotropic correlation
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Extended DataFig.7 | Extracting the quantum critical point.a, The mean
Rydbergexcitation density(n) versus detuning4/Qonalé6 x16 array. The data
arefitted withinawindow (dashed lines) toa cubic polynomial (red curve) asa
meansof smoothing the data. b, The peakin the numerical derivative of the
fitted data (red curve) correspondsto the critical point4,/Q=1.12(4) (red

shaded regions show uncertainty ranges, obtained from varying fit windows).
In contrast, the point-by-point slope of the data (grey) is too noisy to be useful.

¢, Order parameter 7 (1, w) for the chequerboard phase versus 4/ measured
onal6 x16 array with the value of the critical point fromb superimposed (red
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line), showing the clear growth of the order parameter after the critical point.
d, DMRG simulations of (n) versus 4/Qonal0 x10 array. For comparison
against the experimental fitting procedure, the datafrom numerics are also
fitted to a cubic polynomial within theindicated window (dashed lines). e, The
point-by-pointslope of the numerical data (blue curve) hasapeakat4,/Q=1.18
(blue dashedline),in good agreement with the results (red dashed line) from
boththe numerical derivative of the cubic fit on the same data (red curve) and
the result of the experiment. f, DMRG simulation of F (1r, ) versus 4/Q, with the
exact quantum critical point from numerics shown (red line).
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plot.b, Our determination of v (red) from data collapse around the
independently determined 4./Q (blue) is consistent across arrays of different
sizes.c-e, Datacollapseisclearly better at the experimentally determined
value (v=0.62) as compared with the mean-field (v=0.5) orthe 1+1)D (v=1)
values. The horizontal extent of the data corresponds to the region of overlap
ofallrescaled datasets.

Extended DataFig. 8| Optimization of data collapse. a, Distance Dbetween
rescaled correlation length & versus 4 curves depends on both the location of
the quantum critical point4./Qand onthe correlation length critical exponent
v.Theindependently determined 4./Q (blue line, withuncertainty rangein
grey) and the experimentally extracted value of v(dashed red line, with
uncertainty range correspondingto thered shaded region) are marked onthe
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