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Quantum phases of matter on a 256-atom 
programmable quantum simulator

Sepehr Ebadi1, Tout T. Wang1, Harry Levine1, Alexander Keesling1,2, Giulia Semeghini1, 
Ahmed Omran1,2, Dolev Bluvstein1, Rhine Samajdar1, Hannes Pichler3,4, Wen Wei Ho1,5, 
Soonwon Choi6, Subir Sachdev1, Markus Greiner1, Vladan Vuletić7 & Mikhail D. Lukin1 ✉

Motivated by far-reaching applications ranging from quantum simulations of 
complex processes in physics and chemistry to quantum information processing1, a 
broad effort is currently underway to build large-scale programmable quantum 
systems. Such systems provide insights into strongly correlated quantum matter2–6, 
while at the same time enabling new methods for computation7–10 and metrology11. 
Here we demonstrate a programmable quantum simulator based on deterministically 
prepared two-dimensional arrays of neutral atoms, featuring strong interactions 
controlled by coherent atomic excitation into Rydberg states12. Using this approach, 
we realize a quantum spin model with tunable interactions for system sizes ranging 
from 64 to 256 qubits. We benchmark the system by characterizing high-fidelity 
antiferromagnetically ordered states and demonstrating quantum critical dynamics 
consistent with an Ising quantum phase transition in (2 + 1) dimensions13. We then 
create and study several new quantum phases that arise from the interplay between 
interactions and coherent laser excitation14, experimentally map the phase diagram 
and investigate the role of quantum fluctuations. Offering a new lens into the study of 
complex quantum matter, these observations pave the way for investigations of 
exotic quantum phases, non-equilibrium entanglement dynamics and 
hardware-efficient realization of quantum algorithms.

Recent breakthroughs have demonstrated the potential of program-
mable quantum systems, with system sizes reaching around 50 trapped 
ions2,15,16 or superconducting qubits7–9, for simulations and computa-
tion. Correlation measurements with over 70 photons have been used 
to perform boson sampling10, while optical lattices with hundreds of 
atoms are being used to explore Hubbard models3–5. Larger-scale Ising 
spin systems have been realized using superconducting elements17, 
but they lack the coherence essential for probing quantum matter.

Neutral atom arrays have recently emerged as a promising platform 
for realizing programmable quantum systems6,12,18. Based on individu-
ally trapped and detected cold atoms in optical tweezers with strong 
interactions between Rydberg states19, atom arrays have been used 
to explore quantum dynamics in one- and two-dimensional (1D and 
2D) systems6,20–24, to create high-fidelity25 and large-scale26 entangle-
ment, to perform parallel quantum logic operations27,28, and to realize 
optical atomic clocks29,30. Although large numbers of atoms have been 
trapped30 and rearranged in two and three dimensions31–34, coherent 
manipulation of programmable, strongly interacting systems with 
more than 100 individual particles remains a challenge. Here, we realize 
a programmable quantum simulator using arrays of up to 256 neutral 
atoms with tunable interactions, demonstrating several new quantum 
phases and quantitatively probing the associated phase transitions.

 
Programmable Rydberg arrays in 2D
Our experiments are carried out on the second generation of an experi-
mental platform described previously6. The new apparatus uses a spa-
tial light modulator (SLM) to form a large 2D array of optical tweezers 
in a vacuum cell (Fig. 1a, Methods). This static tweezer array is loaded 
with individual 87Rb atoms from a magneto-optical trap, with a uni-
form loading probability of 50–60% across up to 1,000 tweezers. We 
rearrange the initially loaded atoms into programmable, defect-free 
patterns using a second set of moving optical tweezers that are steered 
by a pair of crossed acousto-optical deflectors (AODs) to arbitrary 
positions in two dimensions (Fig. 1a)35. Our parallel rearrangement 
protocol (see Methods) enables rearrangement into a wide variety of 
geometries including square, honeycomb and triangular lattices (left 
panels in Fig. 1b–d). The procedure takes a total time of 50–100 ms 
for arrays of up to a few hundred atoms and results in filling fractions 
exceeding 99%.

Qubits are encoded in the electronic ground state  g⟩  and the highly 
excited n = 70 Rydberg state  r⟩  of each atom. We illuminate the entire 
array from opposite sides with two counter-propagating laser beams 
at 420 nm and 1,013 nm, shaped into light sheets (see Methods), to 
coherently couple  g⟩  to   r⟩  via a two-photon transition (Fig. 1a).
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The resulting many-body dynamics U(t) are governed by a combina-
tion of the laser excitation and long-range van der Waals interactions 
between Rydberg states V V( = /| − | )ij i j0

6x x  , described by the Hamiltonian

∑ ∑ ∑H
ħ

Ω r g Δ n V n n=
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i i
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<

where ħ is the reduced Planck’s constant, h.c. denotes the Hermitian 
conjugate, n r r= ⟩⟨i i i , and Ω and Δ are the two-photon Rabi frequency 
and detuning, respectively. After evolution under the Hamiltonian (1), 
the state of each atomic qubit is read out by fluorescence imaging that 
detects only atoms in  g⟩, while atoms in  r⟩  are detected as loss. Detec-
tion fidelities exceed 99% for both states (see Methods).

The Rydberg blockade mechanism36,37 is central to understanding 
the programmable dynamics driven by the Hamiltonian (1). It originates 
from the long-range interactions between Rydberg states, providing 
an effective constraint that prevents simultaneous excitation of atoms 
within a blockade radius R V Ω≡ ( / )b 0

1/6. We control the effective block-
ade range Rb/a by programming the lattice spacing a for the atom array. 
Using these control tools, we explore quantum evolution resulting in 
a wide variety of quantum phases.

Chequerboard phase
The smallest value of Rb/a that results in an ordered phase for the quan-
tum many-body ground state of the system corresponds to Rb/a ≈ 1, 
where only one out of every pair of nearest-neighbour atoms can be 
excited to r⟩. On a square array, this constraint leads to a 
ℤ2-symmetry-broken chequerboard phase with an antiferromagnetic 
(AF) ground state. To realize such a state, we initialize the array at 
Rb/a = 1.15 (a = 6.7 μm, Ω = 2π × 4.3 MHz) with all atoms in g⟩. We then 
dynamically sweep the detuning Δ from negative to positive values 
while keeping the Rabi frequency Ω fixed to bring the system 
quasi-adiabatically into the chequerboard phase (Fig. 1b and Fig. 2a). 
A similar approach can be used to create analogous ordered phases on 
other lattice geometries (Fig. 1c, d).

We quantify the strength of antiferromagnetic correlations in the cheq-
uerboard phase over many experimental repetitions using the connected 
density–density correlator G k l n n n n( , ) = ∑ (⟨ ⟩ − ⟨ ⟩⟨ ⟩)N i j i j i j

(2) 1
,k l( , )

, where 

the sum is over all pairs of atoms (i, j) separated by the same relative 
lattice displacement x = (k, l) sites, normalized by the number of such 
pairs N(k,l). Our measurement of G(2)(k, l) on a 12 × 12 system (Fig. 2b) 
yields horizontal, vertical and radially averaged correlation lengths of 
ξH = 11.1(1), ξV = 11.3(1) and ξR = 12.0(1), respectively (see Fig. 2c and Meth-
ods), showing long-range correlations across the entire 144-atom array. 
These exceed the values reported previously for 2D systems20,21 by 
nearly an order of magnitude.

Single-site readout also allows us to study individual many-body 
states of our system (Fig. 2d). Out of 6,767 repetitions on a 12 × 12 array, 
the two perfectly ordered states  AF ⟩1  and  AF ⟩2  are by far the most 
frequently observed microstates, with near-equal probabilities 
between the two. We benchmark our state preparation by measuring 
the probability of observing perfect chequerboard ordering as a func-
tion of system size (Fig. 2e). We find empirically that the probability 
scales with the number of atoms according to an exponential 0.97N, 
offering a benchmark that includes all experimental imperfections 
such as finite detection fidelity, non-adiabatic state preparation, spon-
taneous emission, finite Rydberg-state lifetime and residual quantum 
fluctuations in the ordered state (see Methods). Remarkably, even for 
a system size as large as 15 × 15 (225 atoms), we still observe the perfect 
antiferromagnetic ground state with probability 0.10 %−4

+5  within the 
exponentially large Hilbert space of dimension 2225 ≈ 1068.

(2 + 1)D Ising quantum phase transition
We now study the quantum phase transition into the chequerboard 
phase. Quantum phase transitions fall into universality classes charac-
terized by critical exponents that determine universal behaviour near 
the quantum critical point, independent of the microscopic details of the 
Hamiltonian13. The transition into the chequerboard phase is expected to 
be in the paradigmatic—but never previously observed—quantum Ising 
universality class in (2 + 1) dimensions14. Quantitative probing of such 
transitions can be used to benchmark quantum many-body evolution38.

To explore universal scaling across this phase transition for a large 
system, we study the dynamical build-up of correlations associated 
with the quantum Kibble–Zurek mechanism24,39 on a 16 × 16 (256 atoms) 
array, at fixed Rb/a = 1.15. We start at a large negative detuning with all 
atoms in  g⟩ and linearly increase Δ/Ω, stopping at various points to 
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Fig. 1 | Programmable two-dimensional arrays of strongly interacting 
Rydberg atoms. a, Atoms are loaded into a 2D array of optical tweezer traps 
and rearranged into defect-free patterns by a second set of moving tweezers. 
Lasers at 420 nm and 1,013 nm drive a coherent two-photon transition in each 
atom between ground state  g S F m⟩ = |5 , = 2, = − 2⟩F1/2   and Rydberg state 
r S m m⟩ = |70 , = − 1/2, = − 3/2⟩j I1/2 . EMCCD, electron-multiplying charge-coupled 
device. b, Fluorescence image of initial random loading of atoms, followed by 
rearrangement to a defect-free 15 × 15 (225 atoms) square array. After this 

initialization, the atoms evolve coherently under laser excitation according to 
the Hamiltonian (equation (1)) with Rabi frequency Ω(t), detuning Δ(t) and 
long-range interactions Vij, realizing a many-body unitary U(t). Finally, the state 
of each atom is read out, with atoms excited to r⟩ detected as loss and marked 
with red circles. Shown on the far right is an example measurement following 
quasi-adiabatic evolution into the chequerboard phase. c,d, Similar evolution 
on honeycomb and triangular lattices result in analogous ordered phases of 
Rydberg excitations with filling 1/2 and 1/3, respectively.
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measure the growth of correlations across the phase transition 
(Fig. 3a,b). Slower sweep rates s = dΔ/dt result in longer correlation 
lengths ξ, as expected (Fig. 3c).

The quantum Kibble–Zurek mechanism predicts a universal scal-
ing relationship between the control parameter Δ and the correlation 
length ξ. Specifically, when both Δ and ξ are rescaled with the sweep 
rate s (relative to a reference rate s0)

ξ ξ s s~ = ( / ) (2)μ
0

Δ Δ Δ s s~ = ( − )( / ) (3)κ
c 0

with critical point Δc and critical exponents μ ν zν≡ /(1 + )  and 
κ zν≡ − 1/(1 + ), then universality implies that the rescaled ξ~ versus Δ~ 
collapses onto a single curve24 for any sweep rate s. Figure 3d shows a 

striking collapse of experimental data, demonstrating such a universal 
scaling.

The underlying class of phase transitions (quantum or classical) 
is described by Lorentz-invariant field theories13, resulting in 
dynamical critical exponent z = 1. We experimentally extract the 
correlation length critical exponent ν for our system by finding the 
value that optimizes universal collapse. To do so, we first indepen-
dently determine the position of the critical point Δc, which cor-
responds to the peak of the susceptibility χ H Δ= − ∂ ⟨ ⟩/∂2 2  and is 
associated with a vanishing gap13. For adiabiatic evolution under 
the Hamiltonian (1), the susceptibility χ is related to the mean 
Rydberg excitation density n⟨ ⟩ by χ n Δ= ∂⟨ ⟩/∂  according to the 
Hellman-Feynman theorem. We measure n⟨ ⟩ versus Δ along a slow 
linear sweep to remain as adiabatic as possible. We take the numer-
ical derivative of the fitted data to obtain χ, finding its peak to be 
at Δ Ω/ = 1.12(4)c  (see Methods).
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Fig. 2 | Benchmarking of quantum simulator using chequerboard ordering. 
a, A quasi-adiabatic detuning sweep Δ(t) at constant Rabi frequency Ω is used to 
prepare the chequerboard ground state with high fidelity. b, Two-site 
correlation function G(2)(k,l), averaged over all pairs of atoms on a 12 × 12 array, 
showing near-perfect alternating correlations throughout the entire system.  
c, Top panel: exponential fits of rectified horizontal and vertical correlations 
are used to extract correlation lengths in the corresponding directions, ξH and 
ξV. Bottom panel: radially averaged coarse-grained correlations G(2)

m as a 
function of radial distance used to calculate ξR (see Methods). Error (in 
brackets) denotes the uncertainty in the fit. d, Histogram of many-body state 
occurrence frequency after 6,767 repetitions of the experiment on a 12 × 12 
array. The two most frequently occurring microstates correspond to the two 
perfect chequerboard orderings AF1 and AF2, and the next four most common 
ones are those with a single defect in one of the corners of the array.  
e, Probability of finding a perfect chequerboard ground state as a function of 
array size (error bars represent the 68% confidence interval). The slightly 
higher probabilities in odd × odd systems is due to commensurate edges on 
opposing sides of the array. All data in this figure are conditioned on defect-free 
rearrangement of the array.
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Fig. 3 | Observation of the (2 + 1)D Ising quantum phase transition on a 
16 × 16 array. a, The transition into the chequerboard phase is explored using a 
linear detuning sweep Δ(t) at constant Ω. The resulting chequerboard ordering 
is measured at various endpoints. b, Example of growing correlations G(2) with 
increasing Δ/Ω along a linear sweep with sweep rate s = 15 MHz μs−1. c, Growth of 
correlation length ξ for s spanning about an order of magnitude (15, 21, 30, 42, 
60, 85 and 120 MHz μs−1). ξ used here measures correlations between the 
coarse-grained local staggered magnetization (see Methods). d, For an 
optimized value of the critical exponent ν, all curves collapse onto a single 
universal curve when rescaled relative to the quantum critical point Δc. Inset: 
distance D between all pairs of rescaled curves as a function of ν (see Methods). 
The minimum at ν = 0.62(4) (red dashed line) yields the experimental value for 
the critical exponent (red and grey shaded regions indicate uncertainties) and 
is consistent with the theoretical prediction14 ν = 0.629.
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Having identified the position of the critical point, we now extract 
the value of ν that optimizes data collapse (inset of Fig. 3d and Meth-
ods). The resulting ν = 0.62(4) rescales the experimental data to clearly 
fall on a single universal curve (Fig. 3d). This measurement is in good 
agreement with the value of ν = 0.629 predicted for the quantum Ising 
universality class in (2 + 1) dimensions14, and distinct from both the 
mean-field value13 of ν = 1/2 and the previously verified value in (1 + 1) 
dimensions24 of ν = 1 (also corresponding to the 2D classical Ising phase 
transition). The extracted critical exponent ν is consistent across differ-
ent array sizes (Extended Data Fig. 8) and has an uncertainty dominated 
by the precision of our independent measurement of the location of 
the quantum critical point (see Methods). This demonstration of uni-
versal scaling constitutes a clear signature of quantum many-body 
behaviour, and highlights opportunities for quantitative studies of 
quantum critical phenomena.

Phase diagram of the square lattice
A rich variety of new phases has been recently predicted for the square 
lattice when Rydberg blockade is extended beyond nearest  
neighbours14. To map this phase diagram experimentally, we use the 
Fourier transform of single-shot measurement outcomes, 
  k k x a n Nℱ( ) = ∑ exp(i ⋅ / ) /i i i , which characterizes long-range order in 
our system. For instance, the chequerboard phase shows a prominent 
peak at k = (π,π), corresponding to the canonical antiferromagnetic 
order parameter: the staggered magnetization (Fig. 4a). We construct 

order parameters for all observed phases using the symmetrized  
Fourier transform k k k k k kℱ~ ( , ) = ⟨ℱ( , ) + ℱ( , )⟩/21 2 1 2 2 1 , averaged over ex- 
perimental repetitions, which takes into account the reflection  
symmetry in our system (see Methods).

When interaction strengths are increased such that next-nearest 
(diagonal) neighbour excitations are suppressed by Rydberg interactions 
(R a/ ≳ 2b ), translational symmetry along the diagonal directions is also 
broken, leading to the appearance of a new striated phase (Fig. 4b). In 
this phase, Rydberg excitations are mostly located two sites apart and 
hence appear both on alternating rows and alternating columns. This 
ordering is immediately apparent through the observation of prominent 
peaks at k = (0,π), (π,0) and (π,π) in the Fourier domain. As discussed 
and demonstrated below, quantum fluctuations, appearing as defects 
on single-shot images (Fig. 4b), have a key role in stabilizing this phase.

At even larger values of R a/ ≳ 1.7b , the star phase emerges, with 
Rydberg excitations placed every four sites along one direction and 
every two sites in the perpendicular direction. There are two possible 
orientations for the ordering of this phase, so Fourier peaks are 
observed at k = (π,0) and (π/2,π), as well as at their symmetric partners 
(0,π) and (π,π/2) (Fig. 4c). In the thermodynamic limit, the star order-
ing corresponds to the lowest-energy classical configuration of 
Rydberg excitations on a square array with a density of 1/4.

We now systematically explore the phase diagram on 13 × 13 (169 
atoms) arrays, with dimensions chosen to be simultaneously commen-
surate with chequerboard, striated and star orderings (see Methods). 
For each value of the blockade range Rb/a, we linearly sweep Δ (similar 
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Fig. 4 | Phase diagram of the two-dimensional square lattice. a, Example 
fluorescence image of atoms in the chequerboard phase and the 
corresponding Fourier transform averaged over many experimental 
repetitions  k⟨ℱ( )⟩, highlighting the peak at (π,π) (circled). b, Image of atoms in 
the striated phase and the corresponding  k⟨ℱ( )⟩  highlighting peaks at (0,π), 
(π,0) and (π,π) (circled). c, Image of atoms in the star phase with corresponding 
Fourier peaks at (π/2,π) and (π,0) (circled), as well as at symmetric partners 

(π,π/2) and (0,π). d, The experimental phase diagram is constructed by 
measuring order parameters for each of the three phases for different values of 
the tunable blockade range Rb/a and detuning Δ/Ω. Red markers indicate the 
numerically calculated phase boundaries (see Methods). e, The order 
parameters evaluated numerically for the ground state using DMRG for a 9 × 9 
array (see Methods). (Note different dimensionless colour scales used for the 
star phase comparison.)
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to Fig. 3a but with a ramp-down time of 200 ns for Ω), stopping at evenly 
spaced endpoints to raster the full phase diagram. For every endpoint, 
we extract the order parameter corresponding to each many-body 
phase, and plot them separately to show their prominence in different 
regions of the phase diagram (Fig. 4d).

We compare our observations with numerical simulations of the 
ground state phase diagram using the density-matrix renormalization 
group (DMRG) on a smaller 9 × 9 array with open boundary conditions— 
the largest system size accessible with a similar phase diagram (Fig. 4e 
and red markers in Fig. 4d) (see Methods). We find excellent agree-
ment in the extent of the chequerboard phase. For the striated and star 
phases, we also find good similarity between experiment and theory, 
although, owing to their larger unit cells and the existence of many 
degenerate configurations, these two phases are more sensitive to 
both edge effects and experimental imperfections. We emphasize 
that the numerical simulations evaluate the order parameter for the 
exact ground state of the system at each point, whereas the experiment 
quasi-adiabatically prepares these states via a dynamical process. These 
results establish the potential of programmable quantum simulators 
with tunable, long-range interactions for studying large quantum 
many-body systems that are challenging to access with state-of-the-art 
computational tools40.

Quantum fluctuations in the striated phase
We now explore the nature of the striated phase. In contrast to the 
chequerboard and star phases, which can be understood from a 
dense-packing argument14, this phase has no counterpart in the classical 
limit (Ω → 0) (see Methods). Striated ordering allows the atoms to lower 
their energy by partially aligning with the transverse field, favouring this 
phase at finite Ω. This can be seen by considering the 2 × 2 unit cell, within 
which one site has a large Rydberg excitation probability (designated 
the (0,0) sublattice) (Fig. 5a). Excitations on its nearest-neighbour (0,1) 
and (1,0) sublattices are suppressed owing to strong Rydberg blockade. 
The remaining atoms on the (1,1) sublattice have no nearest neighbours 
in the Rydberg state and experience a much weaker interaction from 
four next-nearest (diagonal) neighbours on the (0,0) sublattice, thus 
allowing the (1,1) atoms to lower their energy by forming a coherent 
superposition between ground and Rydberg states (Fig. 5b).

We experimentally study quantum fluctuations in this phase by 
observing the response of the system to short quenches (with quench 
times tq < 1/Ωq). The dependence on the detuning Δq and laser phase ϕq 
of the quench (where Ω → Ωeiϕq in equation (1)) contains information 
about local correlations and coherence, which allows us to characterize 
the quantum states on the different sublattices. The quench resonance 
for each site is determined by the strong interactions with its nearest 
and next-nearest neighbours, resulting in a large difference between 
the (0,0) and (1,1) sublattices. Therefore, when one sublattice is reso-
nantly driven, the other is effectively frozen on the short timescale tq.

The nature of the striated phase is revealed using nine-particle 
operators to measure the state of an atom, conditioned on its local 
environment. Specifically, we evaluate the conditional Rydberg density 
P(d), defined as the excitation probability of an atom if all nearest neigh-
bours are in  g⟩ and exactly d next-nearest (diagonal) neighbours are 
in  r⟩ (see Methods). For d = 0, we observe a dip in P(0) near the bare 
atom resonance (Fig. 5c), corresponding to resonant de-excitation of the 
(0,0) sublattice. Meanwhile, P(3) and P(4) have two separate peaks that 
correspond to resonant excitation of the (1,1) sublattice with d = 3 and 
d = 4 next-nearest neighbour excitations, respectively (Fig. 5c). Remark-
ably, we find that the quench response of both the (0,0) and (1,1) sublat-
tices depends on the phase ϕq of the driving field during the quench 
(Fig. 5d, e). The measured visibilities, together with a simple mean-field 
model (see Methods), enable the estimation of unknown Bloch vector  
components on the two sublattices, yielding σ⟨ ⟩ = − 0.82(6)x (0,0) , 

σ⟨ ⟩ = 0.25(2)y (0,0) ,  and σ⟨ ⟩ = − 0.46(4)x (1,1) , σ⟨ ⟩ = 0.01(1)y (1,1) . We empha-

size that accurate characterization requires the use of more sophisti-
cated variational wavefunctions (based on, for example, tensor 
networks) and warrants further investigation. This approach can also 
be extended through techniques such as shadow tomography41 and 
can be applied to probe the coherence properties of highly entangled 
quantum states of matter42–44.

Outlook
These experiments demonstrate that 2D Rydberg atom arrays con-
stitute a powerful platform for programmable quantum simulations 
with hundreds of qubits. We expect that system size, quantum control 
fidelity and degree of programmability can all be increased consider-
ably through technical improvements. In particular, array sizes and 
rearrangement fidelities, along with atomic-state readout, are cur-
rently limited by collisions with background gas particles, and can be 
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improved with an upgraded vacuum system25 and increased photon 
collection efficiency. Quantum coherence can be enhanced by using 
higher-power Rydberg lasers and by encoding qubits in hyperfine 
ground states19,28. Tweezers with different atomic25,30,45 and molecu-
lar46,47 species can provide additional features and lead to new appli-
cations in both quantum simulations and metrology. Finally, rapidly 
switchable local control beams can be used to perform universal qubit 
operations in parallel across the system.

Our experiments realize several new quantum phases and provide 
insights into quantum phase transitions in 2D systems. These studies 
can be extended along several directions, including the exploration of 
non-equilibrium entanglement dynamics through rapid quenches across 
quantum phase transitions48–50, the study of surface criticality in systems 
with sharp boundaries51, the investigation of topological quantum states 
of matter on frustrated lattices42–44, the simulation of lattice gauge theo-
ries52,53 and the study of broader classes of spin models using hyperfine 
encoding54. Quantum information processing can also be explored with 
hardware-efficient methods for multi-qubit operations28 and protocols 
for quantum error correction and fault-tolerant control55. Finally, our 
approach is well suited for efficient implementation of new algorithms for 
quantum optimization56,57 and sampling58, enabling experimental tests of 
their performance with system sizes exceeding several hundred qubits.

During the completion of this work, we became aware of related 
work demonstrating quantum simulations of 2D antiferromagnets 
with hundreds of Rydberg atoms59.
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Methods

2D optical tweezer array
Our 2D tweezer array is generated by a free-running 810-nm Ti:sapphire 
laser (M Squared, 18-W pump). The laser illuminates a phase-control 
spatial light modulator (Hamamatsu X13138-02), which imprints a 
computer-generated hologram on the wavefront of the laser field. The 
phase hologram is calculated using the phase-fixed weighted  
Gerchberg–Saxton (WGS) algorithm60 to produce an arbitrary arrange-
ment of tweezer spots after propagating to the focus of a microscope 
objective (Mitutoyo: 3.5 mm glass thickness corrected, 50×, NA = 0.5). 
Using this method, we can create tweezer arrays with roughly 1,000 
individual tweezers (Extended Data Fig. 1). When calculating the phase 
hologram, we improve trap homogeneity by pre-compensating for the 
variation in diffraction efficiency across the tweezer array (roughly 
given by θ θsinc ( ( / ))2 π

2 trap max    where θ denotes the deflection angle from 
zeroth order).

We also use the phase control of our SLM to correct for optical aberra-
tions on tweezers within the experimentally used field of view at the plane 
of atoms (Extended Data Fig. 2). Aberrations reduce the peak intensity 
of focal spots (characterized by the Strehl ratio) and correspondingly 
reduce the light shift of our tweezers on the atoms. By measuring these 
light shifts as we apply a wavefront correction to the SLM, parametrized 
by several low-order Zernike polynomials with varying amplitudes, we 
quantify and correct for different aberrations in our optical system 
(Extended Data Fig. 2a). Using this method, we compensate for 70 mil-
liwaves of aberrations, observe a total increase of 18% in our trap intensity 
(Extended Data Fig. 2c) and measure a corresponding reduction in the 
range of trap frequencies (Extended Data Fig. 2d). Aberration correc-
tion additionally allows us to place tweezers closer together (minimum 
separation 3 μm) to reach larger blockade ranges Rb/a.

Tweezers in the array have waists ~900 nm, trap depths of ~2π × 17 MHz 
and radial trap frequencies of ~2π × 80 kHz. In each experimental cycle, 
the tweezers are loaded from a magneto-optical trap with uniform 
loading probabilities of 50–60% after 50–100 ms loading time.

Atom rearrangement
Atoms are rearranged using an additional set of dynamically moving twee-
zers, which are overlaid on top of the SLM tweezer array. These movable 
tweezers are generated by a separate 809-nm laser source (DBR from 
Photodigm and tapered amplifier from MOGLabs) and are steered with a 
pair of independently controlled crossed acousto-optic deflectors (AODs) 
(AA Opto Electronic DTSX-400). Both AODs are driven by an arbitrary wave-
form which is generated in real time using our home-built waveform gen-
eration software and an arbitrary waveform generator (AWG) (M4i.6631-x8, 
Spectrum Instrumentation). Dynamically changing the RF frequency 
allows for continuous steering of beam positions, and multi-frequency 
waveforms allow for multiple moving tweezers to be created in parallel61.

Although many 2D sorting protocols have been described previ-
ously31,33,35,62,63, we implement a new protocol designed to leverage 
parallel movement of multiple atoms simultaneously. More specifi-
cally, we create a row of moving traps which scans upwards along the 
SLM tweezer array to move one atom within each column up in parallel. 
This is accomplished by scanning a single frequency component on 
the vertical AOD to move from the bottom to the top of the SLM array, 
during which individual frequency components are turned on and off 
within the horizontal AOD to create and remove tweezers at the cor-
responding columns. This protocol is designed for SLM tweezer arrays 
in which traps are grouped into columns and rows. Although this does 
constrain the possible geometries, most lattice geometries of interest 
can still be defined on a subset of points along fixed columns and rows.

Rearrangement algorithm
Here we detail the rearrangement algorithm, which is illustrated in 
Extended Data Fig. 3. It operates on an underlying rectangular grid of 

rows and columns, where the SLM traps correspond to vertices of the 
grid. We pre-program a set of ‘target traps’ that we aim to fill.

Pre-sorting. We begin by ensuring that each column contains a sufficient 
number of atoms to fill the target traps in that column. In each experi-
mental cycle, owing to the random loading throughout the array, some 
columns may contain excess atoms while other columns may lack a suf-
ficient number of atoms. Accordingly, we apply a ‘pre-sorting’ procedure 
in which we move atoms between columns. To fill a deficient column j, 
we take atoms from whichever side of j has a larger surplus. We identify 
which atoms to take by finding the nearest atoms from the surplus side 
that are in rows for which column j has an empty trap. We then perform 
parallel horizontal sorting to move these atoms into the empty traps 
of j (not all surplus atoms need to be from the same source column).

If the one-side surplus is insufficient to fill column j, then we move as 
many surplus atoms as possible from this one side and leave j deficient. 
We then proceed to the next deficient column, and cycle through until 
all columns have sufficient atoms. In typical randomly loaded arrays, 
this process takes a small number of atom moves compared with the 
total number of moves needed for sorting. This specific algorithm can 
fail to properly distribute atoms between columns owing to lack of 
available atoms, but these failures are rare and do not limit the experi-
mental capabilities.

Ejection. After pre-sorting, we eject excess atoms in parallel by scanning 
the vertical AOD frequency downward, beginning at a row in which we 
want to pick up an atom, and ending below the bottom row of the array. In 
each downward scan, we eject a single atom from each column containing 
excess atoms; we repeat this process until all excess atoms are ejected.

Parallel sorting within columns. After pre-sorting and ejection, each 
column has the correct number of atoms to fill all of its target traps by 
moving atoms up/down within the column. We now proceed to shuf-
fle the ith-highest loaded atoms to the ith-highest target traps. As the 
atoms cannot move through each other, in a single vertical scan atoms 
are moved as close as possible to their target locations, reaching their 
targets unless they are blocked by another atom. We repeat upward/
downward scans until all atoms reach their target locations.

Rearrangement parameters and results
When using moving tweezers to pick up and drop off atoms in the SLM 
traps, the moving tweezers ramp on/off over 15 μs while positioned 
to overlap with the corresponding SLM trap. The moving tweezers 
are approximately twice as deep as the static traps, and move atoms 
between SLM traps with a speed of 75 μm ms−1. Typical rearrangement 
protocols take a total of 50–100 ms to implement in practice, depending 
on the size of the target array and the random initial loading. Alignment 
of the AOD traps onto the SLM array is pre-calibrated by measuring both 
trap arrays on a monitor CMOS camera and tuning the AOD frequencies 
to match positions with traps from the SLM array.

A single round of rearrangement results in typical filling fractions 
of ~98.5% across all target traps in the system. This is limited primarily 
by the finite vacuum-limited lifetime (~10 s) and the duration of the 
rearrangment procedure. To increase filling fractions, we perform a 
second round of rearrangement (having skipped ejection in the first 
round to keep excess atoms for the second round). Because the second 
round of rearrangement only needs to correct for a small number of 
defects, it requires far fewer moves and can be performed more quickly, 
resulting in less background loss. With this approach, we achieve filling 
fractions of ~99.2% over more than 200 sites, with a total experimental 
cycle time of 400 ms.

Rydberg laser system
Our Rydberg laser system is an upgraded version of a previous set-up26. 
The 420-nm laser is a frequency-doubled Ti:sapphire laser (M Squared, 
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15-W pump). We stabilize the laser frequency by locking the fundamental 
to an upgraded ultra-low-expansion (ULE) reference cavity (notched cyl-
inder design, Stable Laser Systems), with finesse ℱ = 30,000 at 840 nm.  
The 1,013-nm laser source is an external-cavity diode laser (Toptica 
DL Pro), which is locked to the same reference cavity (ℱ = 50,000 at 
1,013 nm). To suppress high-frequency phase noise from this diode 
laser, we use the transmitted light through the cavity, which is filtered 
by the narrow cavity transmission spectrum (30 kHz linewidth)64. This 
filtered light is used to injection-lock another laser diode, whose out-
put is subsequently amplified to 10 W by a fibre amplifier (Azur Light 
Systems).

Using beam shaping optics to homogeneously illuminate the atom 
array with both Rydberg lasers, we achieve single-photon Rabi frequen-
cies of Ω Ω( , ) = 2π × (160, 50) MHz420 1,013 . We operate with an interme-
diate state detuning δ = 2π × 1 GHz, resulting in two-photon Rabi 
frequency Ω Ω Ω δ= /2 ≈ 2π × 4 MHz420 1,013 . Small inhomogeneities in  
the Rydberg beams result in Rabi frequency variations of ~2% RMS and 
~6% peak-to-peak across the array. With these conditions, we estimate an  
off-resonant scattering rate of 1/(20 μs) for atoms in  g⟩  and 1/(150 μs)  
for atoms in  r⟩ at peak power.

Rydberg beam shaping
We illuminate our 2D atom array with counter-propagating 
Rydberg laser beams from each side. Instead of using elliptical 
Gaussian beams, we shape both Rydberg excitation beams into 
one-dimensional top-hats (light sheets) to homogeneously illu-
minate the plane of atoms (Extended Data Fig. 4). To ensure homo-
geneous illumination over the entire array, we define our target 
field profile in the plane of the atoms with both uniform amplitude 
cross-section and flat phase profile. Using a single phase-only SLM in 
the Fourier plane to control both phase and amplitude in the image 
plane is inherently limited in efficiency; therefore, in practice, we 
compromise between optimizing hologram efficiency and beam 
homogeneity. We generate these holograms using the conjugate 
gradient minimization algorithm (Extended Data Fig. 4c)65. In all 
experiments in this work, we use 1D top-hat beams with a flat-width 
of 105 μm and a perpendicular Gaussian width of 25 μm. The con-
version efficiencies into the top-hat modes are 30% for 420 nm and 
38% for 1,013 nm.

Since holographic beam shaping relies on the intricate interplay 
of different high spatial frequency components in the light field, it 
is extremely sensitive to optical aberrations. We correct for all aber-
rations up to the window of our vacuum chamber by measuring the 
amplitude and phase of the electric field as it propagates through the 
optical beampath (Extended Data Fig. 4a, b)66. We do so by picking off 
a small portion of the Rydberg beam and observing it on a camera with 
small pixel size and with sensor cover removed for high-fidelity beam 
characterization (Imaging Source DMM 27UP031-ML). In this way, we 
reduce the wavefront error in our beam down to λ/100, and also use the 
measured field profile as the starting guess in our hologram genera-
tion algorithm (Extended Data Fig. 4a, b). Furthermore, by imaging the 
top-hat beams we also correct for remaining inhomogeneities by updat-
ing the input of our optimization algorithm (Extended Data Fig. 4e, f). 
Owing to aberrations and imperfections of the vacuum windows, we 
observe slightly larger intensity variations on the atoms than expected 
(~3% RMS, ~10% peak-to-peak).

Rydberg pulses
After initializing our atoms in the ground state  g⟩, the tweezer traps 
are turned off for a short time (<5 μs) during which we apply a Rydberg 
pulse. The pulse consists of a time-dependent Rabi frequency Ω(t), 
time-dependent detuning Δ(t), and a relative instantaneous phase ϕ(t). 
This is implemented by controlling the amplitude, frequency and phase 
of the 420-nm laser using a tandem acousto-optical modulator system, 
similar to what is described previously26.

Quasi-adiabatic sweeps. To prepare many-body ground states with 
high fidelity, we use an optimized quasi-adiabatic pulse shape (Fig. 2a). 
The coupling Ω(t) is initially ramped on linearly at large fixed negative 
detuning, held constant during the detuning sweep Δ(t) and finally 
ramped down linearly at large fixed positive detuning. The detuning 
sweep consists of a cubic spline interpolation between five points: initial 
detuning, final detuning, an inflection point where the slope reaches 
a minimum, and two additional points that define the duration of the 
slow part of the sweep. The sweep used for finding perfect chequer-
board ground-state probabilities (Fig. 2e) was obtained by optimizing 
the parameters of the spline cubic sweep to maximize the correlation 
length on a 12 × 12 (144 atoms) array. The sweep used in detection of 
the star and striated phases was optimized based on maximizing their 
respective order parameters. In particular, the inflection point was 
chosen to be near the position of the minimum gap in these sweeps in 
order to maximize adiabaticity.

Linear sweeps. To probe the phase transition into the chequerboard 
phase (Fig. 3), we use variable-endpoint linear detuning sweeps in which 
Ω is abruptly turned off after reaching the endpoint. This ensures that 
projective readout happens immediately after the end of the linear 
sweep instead of allowing time for further dynamics, and is essential 
for keeping the system within the quantum Kibble–Zurek regime. Lin-
ear sweeps are done from Δ = −16 MHz to 14 MHz (Δ/Ω = −3.7 to 3.3) at 
sweep rates s = 15, 21, 30, 42, 60, 85 and 120 MHz μs−1. Data for locating 
the quantum critical point (Extended Data Fig. 7a) are taken from the 
slowest of these sweeps (s = 15 MHz μs−1) to remain as close as possible 
to the ground state. For mapping out the 2D phase diagram (Fig. 4), 
we use the same variable-endpoint linear sweeps at fixed sweep rate 
s = 12 MHz μs−1, except that Ω is ramped down over 200 ns after reach-
ing the endpoint.

State detection
At the end of the Rydberg pulse, we detect the state of atoms by whether 
or not they are recaptured in our optical tweezers. Atoms in g⟩ are 
recaptured and detected with fidelity 99%, limited by the finite tem-
perature of the atoms and collisions with background gas particles in 
the vacuum chamber.

Atoms excited to the Rydberg state are detected as a loss signal 
due to the repulsive potential of the optical tweezers on  r⟩. However, 
the finite Rydberg state lifetime67 (~80 μs for 70S1/2) leads to a prob-
ability of ~15% for  r⟩ atoms to decay to  g⟩ and be recaptured by the 
optical tweezers. In our previous work26, we increased tweezer trap 
depths immediately following the Rydberg pulse to enhance the loss 
signal for atoms in  r⟩. In 2D, this approach is less effective, because 
atoms that drift away from their initial traps can still be recaptured 
in a large 3D trapping structure created by out-of-plane interference 
of tweezers.

Following an approach similar to what has been previously demon-
strated27, we increase the Rydberg detection fidelity using a strong 
microwave pulse to enhance the loss of atoms in  r⟩ while leaving atoms 
in  g⟩ unaffected. The microwave source (Stanford Research Systems 
SG384) is frequency-tripled to 6.9 GHz and amplified to 3 W (Minicir-
cuits, ZVE-3W-183+). The microwave pulse, containing both 6.9 GHz 
and harmonics, is applied on the atoms using a microwave horn for 
100 ns. When applying a Rydberg π-pulse immediately followed by the 
microwave pulse, we observe loss probabilities of 98.6(4)%. Since this 
measurement includes error in the π-pulse as well as detection errors, 
we apply a second Rydberg π-pulse after the microwave pulse, which 
transfers most of the remaining ground state population into the 
Rydberg state. In this configuration, we observe 99.1(4)% loss probabil-
ity, which is our best estimate for our Rydberg detection fidelity 
(Extended Data Fig. 5). We find that the loss signal is enhanced by the 
presence of both microwave fundamental and harmonic frequencies.



Limits on ground-state preparation fidelity
Figure 2e shows an exponential scaling of ~0.97N for the probability of 
preparing perfect chequerboard order versus system size. In this sec-
tion, we provide an estimated accounting of possible contributions to 
the imperfect preparation of the ground state. We measure a ~1% detec-
tion infidelity for both the ground and Rydberg states, and therefore 
attribute the remaining ~2% of the errors to imperfect preparation of 
the many-body ground state of the system.

The dominant source of error for atoms in the ground state is scat-
tering from the intermediate state caused by the 420-nm laser, with 
a rate of 1/(20 μs). The combination of Rydberg state spontaneous 
decay rate of 1/(375 μs), intermediate state scattering rate of 1/(150 μs) 
due to the 1,013-nm laser, and blackbody-induced decay at a rate of  
1/(250 μs) gives a total decay rate of 1/(80 μs) for atoms in the Rydberg 
state. Although it is challenging to model how these errors contribute 
to the many-body state preparation, a simple estimate yields an error 
probability in excess of 10% per atom during a 2–3-μs sweep, much 
larger than the observed infidelity. These considerations indicate that 
some degree of error resilience is present in the many-body dynamics. 
This intriguing observation warrants further investigations.

Coarse-grained local staggered magnetization
We define the coarse-grained local staggered magnetization for a site 
i with column and row indices a and b, respectively, as:

∑m
N

n n=
(− 1)

( − )i

a b

i j i
i j

+

⟨ , ⟩

where j is summed over nearest neighbours of site i and Ni is the number 
of such nearest neighbours (4 in the bulk, 3 along the edges or 2 on the 
corners). The value of mi ranges from −1 to 1, with the extremal values 
corresponding to the two possible perfect antiferromagnetic orderings 
locally on site i and its nearest neighbours (Extended Data Fig. 6a, b). 
The two-site correlation function for mi can then be defined as an aver-
age over experiment repetitions  G k l m m m m( , ) = ∑ (⟨ ⟩ − ⟨ ⟩⟨ ⟩)m N i j i j i j

(2) 1
,k l( , )

, 
where the sum is over all pairs of sites i,j separated by a relative lattice 
distance of x = (k, l) sites and normalized by the number of such pairs 
N(k,l) (Extended Data Fig. 6c). We obtain the correlation length ξR by 
fitting an exponential decay to the radially averaged G k l( , )m

(2)   (Extended 
Data Fig. 6d). The coarse-grained local staggered magnetization mi is 
defined such that the corresponding G k l( , )m

(2)  is isotropic (Extended 
Data Fig. 6c), which makes for natural radial averaging. This radial 
average captures correlations across the entire array better than purely 
horizontal or vertical correlation lengths ξH and ξV, which are more 
sensitive to edge effects.

Determination of the quantum critical point
To accurately determine the location of the quantum critical point Δc 
for the transition into the chequerboard phase, we measure mean 
Rydberg excitation n⟨ ⟩ versus detuning Δ for a slow linear sweep with 
sweep rate s = 15 MHz μs−1 (Extended Data Fig. 7a). To smooth the meas-
ured curve, we fit a polynomial for n⟨ ⟩ versus Δ/Ω and take its numeri-
cal derivative to identify the peak of the susceptibility χ as the critical 
point13 (Extended Data Fig. 7b).

Small oscillations in n⟨ ⟩ result from the linear sweep not being per-
fectly adiabatic. To minimize the effect of this on our fitting, we use 
the lowest-degree polynomial (cubic) whose derivative has a peak, and 
choose a fit window in which the reduced chi-squared metric indicates 
a good fit. Several fit windows around Δ/Ω = 0 to 2 give good cubic fits, 
and we average results from each of these windows to obtain 
Δc/Ω = 1.12(4).

We also numerically extract the critical point for a system with 
numerically tractable dimensions of 10 × 10. Using the density-matrix 
renormalization group (DMRG) algorithm, we evaluate n⟨ ⟩ as a function 

of Δ and then take the derivative to obtain a peak of the susceptibility 
at Δc/Ω = 1.18 (Extended Data Fig. 7d, e). To corroborate the validity of 
our experimental fitting procedure, we also fit cubic polynomials to 
the DMRG data and find that the extracted critical point is close to the 
exact numerical value (Extended Data Fig. 7e). This numerical estimate 
of the critical point for a 10 × 10 array is consistent with the experimen-
tal result on a larger 16 × 16 array. Moreover, our experiments on arrays 
of different sizes show that Δc/Ω does not vary significantly between 
12 × 12, 14 × 14 and 16 × 16 arrays (Extended Data Fig. 8b).

Data collapse for universal scaling
Optimizing the universal collapse of rescaled correlation length ξ~ ver-
sus rescaled detuning Δ~ requires defining a measure of the distance 
between rescaled curves for different sweep rates si. Given ξ~ j

i( )
 and Δ~ j

i( )
, 

where the index i corresponds to sweep rate si and j labels sequential 
data points along a given curve, we define a distance68

∑ ∑ ∑D
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ξ f Δ=
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The function f Δ( ~)i( )   is the linear interpolation of ξ~ j

i( )
 versus Δ~ j

i( )
, while 

N is the total number of terms in the three nested sums. The sum  
over j only includes points that fall within the domain of overlap of all 
datasets, avoiding the problem of linear interpolation beyond the 
domain of any single dataset. Defined in this way, the collapse distance 
D measures all possible permutations of how far each rescaled  
correlation growth curve is from curves corresponding to other sweep 
rates.

Applied to our experimental data, D is a function of both the loca-
tion of the critical point Δc and the critical exponent ν (Extended Data 
Fig. 8a). Using the independently measured Δc/Ω = 1.12(4), we obtain 
ν = 0.62(4) for optimal data collapse and illustrate in particular the 
better collapse for this value than for other values of ν (Extended Data 
Fig. 8c–e). The quoted uncertainty is dominated by the corresponding 
uncertainty of the extracted Δc/Ω, rather than by the precision of finding 
the minimum of D for a given Δc/Ω. Note that in realistic systems sweeps 
across the phase transitions result in highly non-thermal states, which 
are challenging to describe within a simple framework24. As compared 
with methods used previously in a 1D system24, the present approach is 
robust with respect to additional dynamics after crossing the critical 
point. Our experiments give consistent values of Δc/Ω and ν for systems 
of size 12 × 12, 14 × 14 and 16 × 16 (Extended Data Fig. 8b), suggesting that 
boundary effects do not significantly impact our results. However, the 
presence of sharp boundaries in our system offers the opportunity to 
study surface criticality51, which in our system has a critical exponent69 
that is distinctly different from the bulk value ν = 0.629.

Order parameters for many-body phases
We construct order parameters to identify each phase using the Fourier 
transform to quantify the amplitude of the observed density-wave 
ordering. We define the symmetrized Fourier transform 

k k k k k kℱ~ ( , ) = ⟨ℱ( , ) + ℱ( , )⟩/21 2 1 2 2 1  to take into account the C4 rotation 
symmetry between possible ground-state orderings for some phases. 
For the star phase, the Fourier amplitude ℱ~ (π, π/2)  is a good order 
parameter because ordering at k = (π,π/2) is unique to this phase. The 
striated phase, on the other hand, shares its Fourier peaks at k = (π,0) 
and (0,π) with the star phase, and its peak at k = (π,π) with the cheq-
uerboard phase; hence, none of these peaks alone can serve as an order 
parameter. We therefore construct an order parameter for the striated 
phase to be ℱ~ (0, π) − ℱ~ (π/2, π), which is non-zero in the striated phase 
and zero in both chequerboard and star. Similarly, the chequerboard 
shares its k = (π,π) peak with the striated phase, so we construct 
ℱ~ (π, π) − ℱ~ (0, π)   as an order parameter that is zero in the striated phase  
and non-zero only in chequerboard.
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Numerical simulations using DMRG
We numerically compute the many-body ground states at different 
points in the (Δ/Ω, Rb/a) phase diagram using the DMRG algorithm70,71, 
which operates in the space of the so-called matrix product state 
ansätze. Although originally developed for 1D systems, DMRG can also 
be extended to two dimensions by representing the 2D system as a 
winding 1D lattice72, albeit with long-range interactions. A major limi-
tation to 2D DMRG is that the number of states required to faithfully 
represent the ground-state wavefunction has to be increased expo-
nentially with the width of the system in order to maintain a constant 
accuracy. For our calculations, we use a maximum bond dimension of 
1,600, which allows us to accurately simulate 10 × 10 square arrays14. 
We also impose open boundary conditions in both directions and trun-
cate the van der Waals interactions so as to retain up to third-nearest- 
neighbour couplings. The numerical convergence criterion is set by 
the truncation error, and the system is regarded to be well-converged 
to its true ground state once this error drops below a threshold of 10−7. 
In practice, this was typically found to be achieved after (10 )2O  succes-
sive sweeps.

Since the dimensions of the systems studied in Fig. 4, 13 × 13 (experi-
mentally) and 9 × 9 (numerically), are both of the form (4n + 1) × (4n + 1), 
the two phase diagrams are expected to be similar. In particular, both 
these system sizes are compatible with the commensurate ordering 
patterns of the crystalline phases observed in this work, and can host 
all three phases (at the appropriate Rb/a) with the same boundary con-
ditions. Likewise, for extraction of the QCP, we use a 10 × 10 array as it 
is the largest numerically accessible square lattice comparable to the 
16 × 16 array used in our study of the quantum phase transition.

Mean-field wavefunction for the striated phase
To understand the origin of the striated phase, it is instructive to start 
from a simplified model in which we assume that nearest-neighbour 
sites are perfectly blockaded. Since we always work in a regime where 
Rb/a > 1, this model should also capture the essential physics of the full 
Rydberg Hamiltonian.

In the classical limit of Ω = 0, the perfect chequerboard state has an 
energy per site of Δ V a V a− /2 + ( 2 ) + (2 ), with V(x) being the interac-
tion between sites at a distance x, whereas the corresponding energy 
for the star-ordered state is −Δ/4 (neglecting interactions for x > 2a). 
Accordingly, there is a phase transition between the chequerboard and 
star phases when Δ V a V a= 4[ ( 2 ) + (2 )] . On the other hand, for the 
same density of Rydberg excitations, the striated phase has a classical 
energy per site of Δ V a− /4 + (2 )/2, which is always greater than that of 
the star phase; hence, striated ordering never appears in the classical 
limit.

At finite Ω, however, the striated phase emerges owing to a com-
petition between the third-nearest-neighbour interactions and 
the second-order energy shift upon dressing a ground state atom 
off-resonantly with the Rydberg state. We can thus model the ground 
state of the striated phase as a product state, where (approximately) 1/2 
of the atoms are in the ground state, 1/4 of the atoms are in the Rydberg 
state and the remaining 1/4 are in the ground state with a weak coher-
ent admixture of the Rydberg state. A general mean-field ansatz for a 
many-body wavefunction of this form is given by

Ψ a a a g a r

a g a r g

( , )⟩ = ⊗ (cos ⟩ + sin ⟩ )

⊗ (cos ⟩ + sin ⟩ ) ⊗ ⟩ ,
(5)
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A B
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where A1 and A2 represent the two sublattices of the (bipartite) A 
sublattice, and a1,2 are variational parameters. If a1 = a2, then our trial 
wavefunction simply represents a chequerboard state, but if a1 ≠ a2,  
this state is not of the chequerboard type and leads to the striated  
phase.

Based on this ansatz, we can now explicitly see how the striated phase 
may become energetically favourable in the presence of a non-zero Ω. 
Consider the atoms on the partially excited sublattice to be in the  
superposition  g Ω V a Δ r| ⟩ + [ /{4 ( 2 ) − }]| ⟩ ; this describes the state of the  
atoms on the (1,1) sublattice in the notation of Fig. 5. The net energy 
per site of the system is then

Δ V a Ω
V a Δ

Ω V a
V a Δ

−
4

+
(2 )
2

−
4 (4 ( 2 ) − )

+
( 2 )

2 (4 ( 2 ) − )

2 2

2

where the third and fourth terms are the second-order energy shift 
and mean-field interaction shift, respectively. From this expression, 
we observe that if the energy gained from the dressing (these last two 
terms) is larger than V(2a)/2, then the striated phase prevails over the 
star phase.

Dynamical probe of the striated phase
We prepare striated ordering using an optimized cubic spline sweep 
along Rb/a = 1.47, ending at Δ/Ω = 2.35. Immediately after this sweep, 
the system is quenched to detuning Δq and relative laser phase ϕq. We 
quench at a lower Rabi frequency Ωq = Ω/4 ≈ 2π × 1 MHz to improve 
the resolution of this interaction spectroscopy. For the chosen lat-
tice spacing, the interaction energy between diagonal excitations is 
2π × 5.3 MHz. The reference phase for the atoms ϕ = 0 is set by the 
instantaneous phase of the Rydberg coupling laser at the end of the 
sweep into striated ordering. In the Bloch sphere picture, ϕ = 0 corre-
sponds to the +x axis, so the wavefunctions on (0,0) and (1,1) sublattices 
correspond to vectors pointing mostly up or mostly down with a small 
projection of each along the +x axis. In the same Bloch sphere picture, 
quenching at ϕq = π/2 or −π/2 corresponds to rotations around the +y 
or −y axes (Fig. 5b).

To resolve the local response of the system, we use high-order cor-
relators which are extracted from single-shot site-resolved readout. 
In particular, we define an operator Ôi

d( ) on the eight atoms surround-
ing site i. This operator projects the neighbouring atoms into configu-
rations in which all four nearest atoms are in g⟩ and exactly d of the 
diagonal neighbours are in r⟩. Specifically, the operator ^

i
d( )O  decom-

poses into a projector Âi on the four nearest neighbouring atoms and 
B̂i

d( ) on the four diagonal neighbours, according to O A B^ = ^ ^
i

d
i i

d( ) ( ). Defin-
ing n g g= ⟩ ⟨i i   and n r r= ⟩ ⟨i i , the nearest-neighbour projector is written 
as A nˆ = ∏i j i j⟨ , ⟩ , where ⟨ . ⟩ denotes nearest neighbours. The projector 
B̂i

d( )
 sums over all configurations of the diagonal neighbours (indexed 

k1, k2, k3, k4) with d excitations:

B n n n nˆ = (6)i k k k k
(4)
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These operators are used to construct the conditional Rydberg density

O
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n
=
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which measures the probability of Rydberg excitation on site i sur-
rounded by neighbouring-atom configurations for which Ô = 1i

d( ) .
To quantify coherences, we measure these conditional probabilities 

on their corresponding resonances, after a fixed quench with variable 
quench phase ϕq. For a single particle driven by the Hamiltonian 
H Ω ϕ σ ϕ σ Δσ= (cos + sin )/2 + /2x y zq q

   for time τ, the resulting Heisenberg 
evolution is given by  σ U σ U′ =z z

† , where  U = e Hτ−i . The resulting opera-
tor can be expressed as



σ Ω α σ ϕ σ ϕ

ΔΩ α σ ϕ σ ϕ

α Δ α σ

′ = ~sin 2 (− sin + cos )

+ 2 ~ ~ sin ( cos + sin )

+ (cos − (1 − 2 ~ )sin )

(9)
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where Δ Δ Δ Ω~ = / +2 2 , Ω Ω Δ Ω~ = / +2 2  and α τ Δ Ω= +1
2

2 2 .
We fit the conditional probabilites P(0) and P(4) as a function of ϕq 

(Fig. 5d, e), taking Δ as the effective detuning from interaction-shifted 
resonance, and measuring  σ⟨ ′ ⟩z   as a function of ϕq to extract the Bloch 
vector components σ σ σ⟨ ⟩, ⟨ ⟩, ⟨ ⟩x y z  on the two respective sublattices. 
For the (1,1) sublattice response, we model the evolution averaged over 
random detunings, due to ~15% fluctuations of the interaction shifts 
associated with thermal fluctuations in atomic positions, which broaden  
and weaken the spectroscopic response. For both sublattices we also 
include fluctuations in the calibrated pulse area (~10% due to low power 
used). The extracted fit values are σ = − 0.82(6), 0.25(2), − 0.32(4)x y z, ,

(0,0)  
and σ = − 0.46(4), 0.01(1), 0.91(5)x y z, ,

(1,1) .

Data availability
The data that support the findings of this study are available from the 
corresponding author on reasonable request.
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Extended Data Fig. 1 | Large arrays of optical tweezers. The experimental 
platform produces optical tweezer arrays with up to ~1,000 tweezers and ~50% 
loading probability per tweezer after 100 ms of magneto-optical trap loading 
time. a, Camera image of an array of 34 × 30 tweezers (1,020 traps), including 

aberration correction. b, Sample image of random loading into this tweezer 
array, with 543 loaded atoms. Atoms are detected on an EMCCD camera with 
fluorescence imaging.
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Extended Data Fig. 2 | Correcting for aberrations in the SLM tweezer array. 
The aberration correction procedure uses the orthogonality of Zernike 
polynomials and the fact that correcting aberrations increases tweezer light 
shifts on the atoms. To independently measure and correct each aberration 
type, Zernike polynomials are added with variable amplitude to the SLM phase 
hologram, with values optimized to maximize tweezer light shifts. a, Two 
common aberration types: horizontal coma (upper) and primary spherical 
(lower), for which ~50 milliwaves compensation on each reduces aberrations 
and results in higher-depth traps. b, Correcting for aberrations associated with 
the 13 lowest-order Zernike polynomials. The sum of all polynomials with their 
associated coefficients gives the total wavefront correction (RMS ~70 
milliwaves) for our optical system, which is summed with the optical tweezer 

hologram on the SLM. c, Trap depths across a 26 × 13 trap array before and after 
correction for aberrations. Aberration correction results in tighter focusing 
(higher trap light shift) and improved homogeneity. Trap depths are measured 
by probing the light shift of each trap on the S F P F|5 , = 2⟩ → |5 , ′ = 2⟩1/2 3/2  
transition. d, Aberration correction also results in higher and more 
homogeneous trap frequencies across the array. Trap frequencies are 
measured by modulating tweezer depths at variable frequencies, resulting in 
parametric heating and atom loss when the modulation frequency is twice the 
radial trap frequency. The measurement after correction for aberrations shows 
a narrower spectrum and higher trap frequencies (averaged over the whole 
array).
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Extended Data Fig. 3 | Rearrangement protocol. a, Sample sequence of 
individual rearrangement steps. There are two pre-sorting moves (1, 2). Move 3 
is the single ejection move. Moves 4–6 consist of parallel vertical sorting within 
each column, including both upward and downward moves. The upper panel 
illustrates the frequency spectrum of the waveform in the vertical and 
horizontal AODs during these moves, with the underlying grid corresponding 

to the calibrated frequencies that map to SLM array rows and columns.  
b, Spectrograms representing the horizontal and vertical AOD waveforms  
over the duration of a single vertical frequency scan during a realistic 
rearrangement procedure for a 26 × 13 array. The heat-maps show frequency 
spectra of the AOD waveforms over small time intervals during the scan.



Extended Data Fig. 4 | Generating homogeneous Rydberg beams.  
a, Measured Gaussian-beam illumination on the SLM for shaping the 420-nm 
Rydberg beam. A Gaussian fit to these data is used as an input for the hologram 
optimization algorithm. b, Measured wavefront error through our optical 
system (after correction), showing a reduction of aberrations to λ/100.  
c, Computer-generated hologram for creating the 420-nm top-hat beam.  

d, Measured light intensity of the 420-nm top-hat beam (top), and the 
cross-section along where atoms will be positioned (bottom). Vertical lines 
denote the 105-μm region where the beam should be flat. e, Using the measured 
top-hat intensity, a phase correction is calculated for adding to the initial 
hologram. f, Resulting top-hat beam after feedback shows considerably 
improved homogeneity. pk–pk, peak to peak.
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Extended Data Fig. 5 | Characterizing microwave-enhanced Rydberg 
detection fidelity. The effect of strong microwave (MW) pulses on Rydberg 
atoms is measured by preparing atoms in g ⟩, exciting to r⟩ with a Rydberg 
π-pulse, and then applying the microwave pulse before de-exciting residual 
Rydberg atoms with a final Rydberg π-pulse. (The entire sequence occurs while 
tweezers are briefly turned off.) a, Broad resonances are observed with varying 
microwave frequency, corresponding to transitions from r⟩ =  S70 ⟩ to other 

Rydberg states. Note that the transitions to P69 ⟩ and P70 ⟩ are in the range of 
10–12 GHz, and over this entire range there is strong transfer out of  r⟩. Other 
resonances might be due to multiphoton effects. b, With fixed 6.9-GHz 
microwave frequency and varying pulse time, there is a rapid transfer out of the 
Rydberg state on the timescale of several nanoseconds. Over short timescales, 
there may be coherent oscillations that return population back to r⟩, so a 
100-ns pulse is used for enhancement of loss signal of r⟩ in the experiment.



Extended Data Fig. 6 | Coarse-grained local staggered magnetization.  
a, Examples of Rydberg populations ni after a faster (top) and slower (bottom) 
linear sweep. b, Corresponding coarse-grained local staggered magnetizations 
mi clearly show larger extents of antiferromagnetically ordered domains (dark 
blue or dark red) for the slower sweep (bottom) than for the faster sweep (top), 
as expected from the Kibble–Zurek mechanism. c, Isotropic correlation 

functions Gm
(2) for the corresponding coarse-grained local staggered 

magnetizations after a faster (top) or a slower (bottom) sweep. d, As a function 
of radial distance, correlations Gm

(2) decay exponentially with a length scale 
corresponding to the correlation length ξ. The two decay curves correspond to 
faster (orange) and slower (blue) sweeps.
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Extended Data Fig. 7 | Extracting the quantum critical point. a, The mean 
Rydberg excitation density n⟨ ⟩ versus detuning Δ/Ω on a 16 × 16 array. The data 
are fitted within a window (dashed lines) to a cubic polynomial (red curve) as a 
means of smoothing the data. b, The peak in the numerical derivative of the 
fitted data (red curve) corresponds to the critical point Δc/Ω = 1.12(4) (red 
shaded regions show uncertainty ranges, obtained from varying fit windows). 
In contrast, the point-by-point slope of the data (grey) is too noisy to be useful. 
c, Order parameter ℱ~ (π, π) for the chequerboard phase versus Δ/Ω measured 
on a 16 × 16 array with the value of the critical point from b superimposed (red 

line), showing the clear growth of the order parameter after the critical point. 
d, DMRG simulations of  n⟨ ⟩ versus Δ/Ω on a 10 × 10 array. For comparison 
against the experimental fitting procedure, the data from numerics are also 
fitted to a cubic polynomial within the indicated window (dashed lines). e, The 
point-by-point slope of the numerical data (blue curve) has a peak at Δc/Ω = 1.18 
(blue dashed line), in good agreement with the results (red dashed line) from 
both the numerical derivative of the cubic fit on the same data (red curve) and 
the result of the experiment. f, DMRG simulation of ℱ~ (π, π) versus Δ/Ω, with the 
exact quantum critical point from numerics shown (red line).



Extended Data Fig. 8 | Optimization of data collapse. a, Distance D between 
rescaled correlation length ξ~ versus Δ~ curves depends on both the location of 
the quantum critical point Δc/Ω and on the correlation length critical exponent 
ν. The independently determined Δc/Ω (blue line, with uncertainty range in 
grey) and the experimentally extracted value of ν (dashed red line, with 
uncertainty range corresponding to the red shaded region) are marked on the 

plot. b, Our determination of ν (red) from data collapse around the 
independently determined Δc/Ω (blue) is consistent across arrays of different 
sizes. c–e, Data collapse is clearly better at the experimentally determined 
value (ν = 0.62) as compared with the mean-field (ν = 0.5) or the (1 + 1)D (ν = 1) 
values. The horizontal extent of the data corresponds to the region of overlap 
of all rescaled datasets.
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